Pharmaceutical products in the current accelerated drug development landscape can benefit from tools beyond data generated from randomized control trials. We have seen an abundance of real-world data (RWD) and real-world evidence, driven by the digitalization of healthcare systems and an increased awareness that has inspired a heightened interest in their potential use. Literature review suggest leveraging RWD as a promising tool to answer key questions in the areas of clinical pharmacology and translational science. RWD may increase our understanding regarding the impact of intrinsic (e.g., liver, renal impairment, or genetic polymorphisms) and extrinsic (e.g., food consumption or concomitant medications) factors on the clearance of administered drugs. Changes in clearance may lead to clinically relevant changes in drug exposure that may require clinical management strategies, such as change in dose or dosing regimen. RWD can be leveraged to potentially bridge the gaps among research, development, and clinical care. This paper highlights promising areas of how RWD have been used to complement clinical pharmacology throughout various phases of drug development; case examples will include dose/regimen extrapolation, dose adjustments for special populations (organ impairment, pediatrics, etc.), and pharmacokinetic/pharmacodynamic models to assess impact of prognostic factors on outcomes. In addition, this paper will also juxtapose limitations and promises of utilizing RWD to answer key scientific questions in drug development and articulate challenges posed by quality issues, data availability, and integration from various sources as well as the increased need for multidimensional-omics data that can better guide the development of personalized and predictive medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579393PMC
http://dx.doi.org/10.1111/cts.13379DOI Listing

Publication Analysis

Top Keywords

drug development
16
clinical pharmacology
12
real-world data
8
development clinical
8
answer key
8
development
6
rwd
6
data
5
drug
5
clinical
5

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!