Introduction: This study aims to investigate the feasibility of a noninvasive handheld electroporation pulses delivery device (EPDD) for electroporation-based treatment (EBT) of skin superficial lesions through numerical analysis and animal study.

Methods: Finite element analysis was performed to investigate the performance of the EPDD. The electric field, temperature, EI and TI were calculated under pulse voltages of 600, 800, and 1000 V. A mouse subcutaneous tumor model was established to evaluate the performance of the EPDD through histopathology and survival analyses.

Results: The electrical field strength increased from 151 (600 V) to 252 V/cm (1000 V) in the skin and from 1302 (600 V) to 2171 V/cm (1000 V) in the tumor. The volume of EI grew and reached a plateau at the 165th pulse, whereas the maximum volume of EI increased with higher voltage. The growth tendency of TI differed between groups, and it was higher in the high-voltage group (HVG) than in the low-voltage group. Histopathological analysis showed that the depth and range of the ablation area could be controlled by adjusting pulse voltage. Survival analysis showed that the survival of the HVG was better than that of the low-voltage and the control group ( < 0.01).

Conclusions: The results demonstrate that the EPDD is feasible, safe, and effective for skin EBT. The volume of EP tissue injury can be controlled by adjusting the pulse voltage, pulse number, and other parameters. The proposed noninvasive handheld EPDD can be a potential therapeutic tool for EBT of superficial skin lesions in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02656736.2022.2104937DOI Listing

Publication Analysis

Top Keywords

numerical analysis
8
analysis animal
8
noninvasive handheld
8
handheld electroporation
8
delivery device
8
skin superficial
8
performance epdd
8
animal study
4
study noninvasive
4
electroporation delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!