Febrile status epilepticus (FSE) is an important risk factor for temporal lobe epilepsy and early identification of those at high risk for epilepsy is vital. In a rat model of FSE, we identified an acute (2 hrs) novel MRI signal where reduced T2 relaxation values in the basolateral amygdala (BLA) predicted epilepsy in adulthood; this T2 signal remains incompletely understood and we hypothesized that it may be influenced by vascular topology. Experimental FSE induced in rat pups reduced blood vessel density of the cortical vasculature in a lateralized manner at 2 hrs post FSE. Middle cerebral artery (MCA) exhibited abnormal topology in FSE pups but not in controls. In the BLA, significant vessel junction reductions and decreased vessel diameter were observed, together with a strong trend for reduced vessel length. Perfusion weighted MRI (PWI) was acutely increased cerebral blood flow (CBF) in cortex, amygdala and hippocampus of FSE pups that correlated to decreased T2 relaxation values compared to controls. This is consistent with increased levels of deoxyhemoglobin associated with increased metabolic demand. In summary, FSE acutely modifies vascular topological and CBF in cortex and BLA that may underlie acute MRI signal changes that predict progression to future epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875348 | PMC |
http://dx.doi.org/10.1177/0271678X221117625 | DOI Listing |
Ann Thorac Surg Short Rep
September 2024
Department of Pediatric Cardiovascular Surgery, Kanazawa Medical University, Ishikawaken, Japan.
Background: The study focuses on vascular compression of the main bronchus in the aortopulmonary space, examining potential contributors within the same axial plane. Its goal is to uncover mechanisms of bronchial compression in patients with intracardiac anomalies and review surgical outcomes, aiming to enhance future results.
Methods: The morphology and topology of structures within the axial plane of the aortopulmonary space were objectively analyzed, including the sternum, ascending aorta, heart, pulmonary artery, descending aorta, and other relevant elements.
Alzheimers Dement
December 2024
Xuanwu Hospital, Capital Medical University, Beijing, Beijing, China
Background: Effective early intervention of mild cognitive impairment (MCI) is the key for preventing dementia. However, there is currently no drug for MCI. As a multi‐targeted neuroprotective agent, butylphthalide has been demonstrated to repair cognition in patients with vascular cognitive impairment, and has the potential to treat MCI due to Alzheimer’s disease (AD).
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Anatomy und Cell Biology, Department of Medical Cell Biology, Philipps-Universität Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
Maximal isometric contraction time (MICT) is critical for most motor tasks and depends on skeletal muscle blood flow at < 40% of maximal voluntary strength (MVC). Whether limb work positions associated with reduced perfusion pressure and facilitated vessel compression affect MICT is largely unknown. In 14 healthy young men we therefore assessed bilateral handgrip MICT at 15, 20, 30, 40, and 70% of MVC in horizontal forearm positions of 0.
View Article and Find Full Text PDFCurr Opin Neurol
February 2025
High Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, Russell Square House, Bloomsbury, London, UK.
J Med Cases
January 2025
Department of Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Anomalous pulmonary vein drainage is a rare but clinically relevant variant of the cardiovascular anatomy. We present a case report of a 22-year-old male who was incidentally found to have anomalous pulmonary vein drainage into the innominate vein. The patient had a known history of seizures and was brought to the emergency department following a simple tonic-clonic seizure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!