/miR-462-731 Feedback Loop Regulates Macrophages Polarization and Phagocytosis in Grass Carp ().

Front Immunol

Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Published: August 2022

MicroRNA clusters are microRNAs (miRNAs) that are distributed in close proximity on chromosomes. In this study, we report a miRNA cluster identified from grass carp (), miR-462-731, which plays a positive role in host antibacterial immunity. The expression of miR-462-731 was disrupted after infection by . Transcription factor ETS transcription factor ELK1 was identified to bind to the promoter of the miR-462-731 cluster and suppress its expression. In addition, miR-731 negatively regulates the expression of , forms an elk1/miR-462-731 double negative feedback loop. In addition, we found that miR-731 directly targets ezrin a (), participates in inducing PI3K/AKT signaling in macrophage, to induce macrophage polarization to the M1 phenotype with stronger phagocytosis. Our results demonstrate a novel elk1/miR-462-731 feedback loop. The data deepen our understanding of the relationship between macrophage polarization and phagocytosis in teleost fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330907PMC
http://dx.doi.org/10.3389/fimmu.2022.946857DOI Listing

Publication Analysis

Top Keywords

feedback loop
12
polarization phagocytosis
8
grass carp
8
transcription factor
8
addition mir-731
8
macrophage polarization
8
/mir-462-731 feedback
4
loop regulates
4
regulates macrophages
4
macrophages polarization
4

Similar Publications

An autocrine synergistic desmin-SPARC network promotes cardiomyogenesis in cardiac stem cells.

Cells Dev

December 2024

Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria. Electronic address:

The mammalian heart contains cardiac stem cells throughout life, but it has not been possible to harness or stimulate these cells to repair damaged myocardium in vivo. Assuming physiological relevance of these cells, which have evolved and have been maintained throughout mammalian evolution, we hypothesize that cardiac stem cells may contribute to cardiomyogenesis in an unorthodox manner. Since the intermediate filament protein desmin and the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) promote cardiomyogenic differentiation during embryogenesis in a cell-autonomous and paracrine manner, respectively, we focus on their genes and employ mouse embryonic and cardiac stem cell lines as in vitro models to ask whether desmin and SPARC cooperatively influence cardiomyogenesis in cardiac stem and progenitor cells.

View Article and Find Full Text PDF

Tumor-derived CCL15 regulates RNA mA methylation in cancer-associated fibroblasts to promote hepatocellular carcinoma growth.

Cancer Lett

December 2024

Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China. Electronic address:

Hepatocellular carcinoma (HCC) is a lethal malignancy characterized by rapid growth. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) significantly influences HCC progression. CCL15, a CC chemokine family member, is predominantly expressed in HCC and strongly correlates with tumor size, indicating its critical role in HCC growth.

View Article and Find Full Text PDF

Neuronal traveling waves form preferred pathways using synaptic plasticity.

J Comput Neurosci

December 2024

Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA.

Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves.

View Article and Find Full Text PDF

An Octopus-Inspired Soft Pneumatic Robotic Arm.

Biomimetics (Basel)

December 2024

Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece.

This paper addresses the design, development, control, and experimental evaluation of a soft robot arm whose actuation is inspired by the muscular structure of the octopus arm, one of the most agile biological manipulators. The robot arm is made of soft silicone and thus possesses enhanced compliance, which is beneficial in a variety of applications where the arm may come into contact with delicate features of its environment. The arm is composed of three elongated segments arranged in series, each one of which contains several pneumatically actuated chambers embedded in its silicone body, which may induce various types of deformations of the segment.

View Article and Find Full Text PDF

This study develops biomimetic strategies for slip prevention in prosthetic hand grasps. The biomimetic system is driven by a novel slip sensor, followed by slip perception and preventive control. Here, we show that biologically inspired sensorimotor pathways can be restored between the prosthetic hand and users.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!