Background: The National Center for Health Statistics (NCHS) links data from surveys to administrative data sources, but privacy concerns make accessing new data sources difficult. Privacy-preserving record linkage (PPRL) is an alternative to traditional linkage approaches that may overcome this barrier. However, prior to implementing PPRL techniques it is important to understand their effect on data quality.

Methods: Results from PPRL were compared to results from an established linkage method, which uses unencrypted (plain text) identifiers and both deterministic and probabilistic techniques. The established method was used as the gold standard. Links performed with PPRL were evaluated for precision and recall. An initial assessment and a refined approach were implemented. The impact of PPRL on secondary data analysis, including match and mortality rates, was assessed.

Results: The match rates for all approaches were similar, 5.1% for the gold standard, 5.4% for the initial PPRL and 5.0% for the refined PPRL approach. Precision ranged from 93.8% to 98.9% and recall ranged from 98.7% to 97.8%, depending on the selection of tokens from PPRL. The impact of PPRL on secondary data analysis was minimal.

Discussion: The findings suggest PPRL works well to link patient records to the National Death Index (NDI) since both sources have a high level of non-missing personally identifiable information, especially among adults 65 and older who may also have a higher likelihood of linking to the NDI.

Conclusion: The results from this study are encouraging for first steps for a statistical agency in the implementation of PPRL approaches, however, future research is still needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335262PMC
http://dx.doi.org/10.3233/sji-210891DOI Listing

Publication Analysis

Top Keywords

pprl
11
record linkage
8
administrative data
8
data sources
8
gold standard
8
impact pprl
8
pprl secondary
8
secondary data
8
data analysis
8
data
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!