Changes in land use can generate environmental pressures that influence soil biodiversity, and numerous studies have examined the influences of land use on the soil microbial communities. However, little is known about the effects of land use on ecological interactions of soil microbes and their predators. Diazotrophs are key soil microbes that play important functional roles in fixing atmospheric nitrogen. In this study, we investigated the co-association of diazotroph community members and patterns of diazotroph and bacterivore networks under different long-term land uses including cropland, grassland, and bare land. Diazotroph community was characterized by high-throughput sequencing. The results indicated that land use type influenced the dominant genera of diazotrophs and shaped the occurrence of specific indicator diazotroph taxa. Co-existing pattern analysis of diazotrophs and bacterivores indicated that grassland converted from cropland increased the complexity of diazotroph and bacterivore network structure. The number of nodes for diazotrophs and bacterivores was higher in grassland than in cropland and bare land. Random forest analysis revealed that six bacterivore genera , and had significant effects on diazotrophs. Bacterivores were found to have predominantly negative effects in bare land. Different bacterivores had differing effects with respect to driving changes in diazotroph community structure. Structural equation model showed that land use could control diazotroph community composition by altering soil properties and regulating abundance of bacterivores. These findings accordingly enhance our current understanding of mechanisms underlying the influence of land use patterns on diazotrophs from the perspective of soil food webs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335130 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.941170 | DOI Listing |
BMC Plant Biol
January 2025
College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.
View Article and Find Full Text PDFISME Commun
January 2024
School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, United States.
Endophytes are microbes living within plant tissue, with some having the capacity to fix atmospheric nitrogen in both a free-living state and within their plant host. They are part of a diverse microbial community whose interactions sometimes result in a more productive symbiosis with the host plant. Here, we report the co-isolation of diazotrophic endophytes with synergistic partners sourced from two separate nutrient-limited sites.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2025
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. Electronic address:
Freshwater lakes globally are witnessing an escalation in the frequency and intensity of cyanobacterial harmful blooms. However, underlying factors influencing the succession or coexistence of cyanobacteria, especially filamentous ones, remain poorly understood. Lake Honghu, a Ramsar Wetland of International Importance with degrading aquatic ecological quality, served as a case study to elucidate the intricate relationship between environmental changes and cyanobacterial dynamics.
View Article and Find Full Text PDFMicrob Ecol
November 2024
Center for Pan-Third Pole Environment, Lanzhou University, No.222, Tianshui South Road, Chengguan District, Lanzhou, Gansu Province, China.
Appl Environ Microbiol
December 2024
Centre Sève, Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Unlabelled: Biological nitrogen fixation (BNF) is an essential source of new nitrogen (N) for terrestrial ecosystems. The abiotic factors regulating BNF have been extensively studied in various ecosystems and laboratory settings. Despite this, our understanding of the impact of neighboring bacteria on N fixer activity remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!