A Model for Radiolysis in a Flowing-Water Target during High-Intensity Proton Irradiation.

ACS Omega

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.

Published: July 2022

At the Facility for Rare Isotope Beams (FRIB), interactions between heavy-ion beams and beam-dump water will create a wide variety of radionuclides which can be accessed by a technique known as "isotope harvesting". However, irradiation of water is always accompanied by the creation of numerous radical, ionic, and molecular radiolysis products. Some of the radiolysis products have sufficiently long lifetimes to accumulate in the irradiated water and affect the harvesting chemistry. Here we investigate the formation of hydrogen peroxide, molecular hydrogen, and molecular oxygen during a high-intensity proton irradiation of a flowing-water isotope-harvesting target and compare the experimental results to simulations. The simulations kinetically model the chemical reactions occurring in the homogeneous phase of radiolysis in flowing water and establish an "effective yield". In both the experiment and simulations, the bulk quantities of H, HO, and O are considerably lower than predicted by primary radiolysis yields (escape yields), meaning that in the high beam intensity regime the homogeneous phase reactions have a considerable impact on the overall chemical composition of the water. Further, it could be shown that for radiation which is characterized by a limited linear energy transfer, such as the here applied protons, the bulk outcome of the microscopic kinetic modeling could be estimated by a simplified steady-state model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330261PMC
http://dx.doi.org/10.1021/acsomega.2c03540DOI Listing

Publication Analysis

Top Keywords

high-intensity proton
8
proton irradiation
8
radiolysis products
8
homogeneous phase
8
water
5
model radiolysis
4
radiolysis flowing-water
4
flowing-water target
4
target high-intensity
4
irradiation facility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!