Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329830 | PMC |
http://dx.doi.org/10.3389/fendo.2022.873699 | DOI Listing |
Gut Microbes
December 2024
Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy.
We investigate the role of homeostatic mechanisms involved in acute, postprandial nutrient metabolism and nutrient-induced systemic inflammation in CKD presence and progression in Metabolic dysfunction-associated steatohepatitis (MASH). We assessed postprandial incretins (GLP-1 and GIP), intestinotropic hormone GLP-2, endotoxin LPS, Zonulin (a marker of intestinal permeability), hepatokines, adipokines and NF-kB activation in circulating MNCs during a meal tolerance test in 52 biopsy proven MASH patients randomized to curcumin Meriva or placebo and 26 matched controls. At baseline, MASH-CKD had a lower GLP-2 response and a 2-fold higher postprandial LPS and NF-kB activation in MNCs than MASH patients without CKD, but similar remaining postprandial or fasting parameters.
View Article and Find Full Text PDFHepatol Int
October 2024
Department of Endocrinology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.
Adv Exp Med Biol
September 2024
Department of Diabetes, Metabolism and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Brown and beige adipocytes produce heat from substrates such as fatty acids and glucose. Such heat productions occur in response to various stimuli and are called adaptive non-shivering thermogenesis. This review introduces mechanisms known to regulate brown and beige adipocyte thermogenesis.
View Article and Find Full Text PDFClin Nutr
September 2024
Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain. Electronic address:
Background: The molecular mediators responsible for the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to steatohepatitis (MASH) have not yet been completely disentangled. We sought to analyze whether FNDC4, an hepatokine and adipokine with anti-inflammatory properties, is involved in TNF-α-induced inflammatory cell death in patients with MASLD.
Methods: Plasma FNDC4 (n = 168) and hepatic FNDC4 and inflammatory cell death (n = 65) were measured in samples from patients with severe obesity with available liver biopsy-proven MASLD diagnosis.
Nat Commun
August 2024
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Egg-laying performance is of great economic importance in poultry, but the underlying genetic mechanisms are still elusive. In this work, we conduct a multi-omics and multi-tissue integrative study in hens with distinct egg production, to detect the hub candidate genes and construct hub molecular networks contributing to egg-laying phenotypic differences. We identifiy three hub candidate genes as egg-laying facilitators: TFPI2, which promotes the GnRH secretion in hypothalamic neuron cells; CAMK2D, which promotes the FSHβ and LHβ secretion in pituitary cells; and OSTN, which promotes granulosa cell proliferation and the synthesis of sex steroid hormones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!