Testicular Sertoli Cell Hormones in Differences in Sex Development.

Front Endocrinol (Lausanne)

MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.

Published: August 2022

The Sertoli cells of the testes play an essential role during gonadal development, in addition to supporting subsequent germ cell survival and spermatogenesis. Anti-Müllerian hormone (AMH) is a member of the TGF-β superfamily, which is secreted by immature Sertoli cells from the 8 week of fetal gestation. lnhibin B is a glycoprotein, which is produced by the Sertoli cells from early in fetal development. In people with a Difference or Disorder of Sex Development (DSD), these hormones may be useful to determine the presence of testicular tissue and potential for spermatogenesis. However, fetal Sertoli cell development and function is often dysregulated in DSD conditions and altered production of Sertoli cell hormones may be detected throughout the life course in these individuals. As such this review will consider the role of AMH and inhibin B in individuals with DSD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329667PMC
http://dx.doi.org/10.3389/fendo.2022.919670DOI Listing

Publication Analysis

Top Keywords

sertoli cell
12
sertoli cells
12
cell hormones
8
sex development
8
development
5
sertoli
5
testicular sertoli
4
cell
4
hormones differences
4
differences sex
4

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Transferrin Receptor 2 (TfR2) is a homolog of Transferrin Receptor 1 (TfR1), involved in regulating intra and extracellular iron levels. Altered iron pathways have been associated with cancer onset and progression; however, their role in canine tumors remains poorly explored. This study investigated TfR2 immunohistochemical expression in non-neoplastic canine testis for the first time and in the most common types of canine testicular tumors: intratubular seminomas (ITSEMs), diffuse seminomas (DSEMs), Leydig cell tumors (LCTs), and Sertoli cell tumors (SCTs).

View Article and Find Full Text PDF

Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.

Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!