Pneumonia is a common lung disease that is the leading cause of death worldwide. It primarily affects children, accounting for 18% of all deaths in children under the age of five, the elderly, and patients with other diseases. There is a variety of imaging diagnosis techniques available today. While many of them are becoming more accurate, chest radiographs are still the most common method for detecting pulmonary infections due to cost and speed. A convolutional neural network (CNN) model has been developed to classify chest X-rays in JPEG format into normal, bacterial pneumonia, and viral pneumonia. The model was trained using data from an open Kaggle database. The data augmentation technique was used to improve the model's performance. A web application built with NextJS and hosted on AWS has also been designed. The model that was optimized using the data augmentation technique had slightly better precision than the original model. This model was used to create a web application that can process an image and provide a prediction to the user. A classification model was developed that generates a prediction with 78 percent accuracy. The precision of this calculation could be improved by increasing the epoch, among other subjects. With the help of artificial intelligence, this research study was aimed at demonstrating to the general public that deep-learning models can be created to assist health professionals in the early detection of pneumonia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334107 | PMC |
http://dx.doi.org/10.1155/2022/5260231 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!