Background: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary blistering disorder characterized by skin fragility, chronic inflammation, malnutrition, and fibrosis. Metabolomics is an emerging investigative field that helps elucidate disease pathophysiology and identify biomarkers. However, previous metabolomic studies in RDEB are limited.
Objective: To investigate the plasma metabolomic profiles in RDEB patients.
Methods: We recruited 10 RDEB patients and 10 age-/gender-matched healthy controls. Peripheral blood samples were collected and plasma metabolomic profiling was performed by LC-MS/MS analysis. MS data processing and compound identification were executed by MS-DIAL. Enrichment analysis was performed by MetaboAnalyst 5.0.
Results: Metabolomic analyses demonstrated that most amino acid levels were downregulated in RDEB patients, and the extent of insufficiency correlated with clinical severity. Several metabolites were dysregulated in RDEB, including glutamine and glutamate metabolism, tryptophan-to-kynurenine ratio, phenylalanine-to-tyrosine ratio, and succinate accumulation.
Limitations: The study was limited by small case numbers and the unrepresentativeness of a single time-point blood sample.
Conclusion: Our study demonstrated the altered metabolomic profiles in RDEB, reflecting the disease severity, the chronic inflammatory and malnourished status, while the fibrotic signatures were not evident.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdermsci.2022.07.006 | DOI Listing |
Mol Oncol
January 2025
Shanghai Stomatological Hospital & School of Stomatology & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Washington University School of Medicine, Saint Louis, MO, USA.
Background: The recent European-ancestry based genome-wide association study (GWAS) of Alzheimer disease (AD) by Bellenguez2022 has identified 75 significant genetic loci, but only a few have been functionally mapped to effector gene level. Besides the large-scale RNA expression, protein and metabolite levels are key molecular traits bridging the genetic variants to AD risk, and thus we decided to integrate them into the genetic analysis to pinpoint key proteins and metabolites underlying AD etiology. Few studies have generated more than one layer of post-transcriptional phenotypes, limiting the scale of biological translation of disease modifying treatments.
View Article and Find Full Text PDFBackground: Peripheral metabolic health status can reflect and/or contribute to the risk of Alzheimer's disease (AD). Peripheral metabolic health status can be indicated by metabolic health markers, such as inflammatory biomarker glycoprotein acetyls (GlycA) and specific components of lipoproteins (e.g.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Compared with the E3 allele of Apolipoprotein E (APOE), E4 increases late-onset Alzheimer's Disease (AD) risk up to 15-fold, while the E2 allele substantially decreases risk. In the CNS, ApoE is predominantly synthesized by astrocytes and microglia, making these two cell types promising targets for ApoE-directed therapeutic approaches. Our lab has generated an inducible "switch" mouse model (APOE4s2) in which we can conditionally replace E4 with the protective E2 in a cell-specific manner.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Nagoya City University, Nagoya, Japan.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Accumulation of amyloid-β (Aβ) in the brains causes chronic neuroinflammation, synaptic loss, and neurovascular damage, which is thought to initiate decades-long AD pathogenesis. Recent clinical trials for anti-Aβ immunotherapy highlights the utility of biomarkers that faithfully reflect Aβ-related brain pathology to diagnose AD at the preclinical stage, to predict the onset and progression of the disease, and to assess the therapeutic efficacy of drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!