A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phase-Controlled Synthesis of Nickel-Iron Nitride Nanocrystals Armored with Amorphous N-Doped Carbon Nanoparticles Nanocubes for Enhanced Overall Water Splitting. | LitMetric

Phase-Controlled Synthesis of Nickel-Iron Nitride Nanocrystals Armored with Amorphous N-Doped Carbon Nanoparticles Nanocubes for Enhanced Overall Water Splitting.

Small

Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.

Published: August 2022

Transition metal nitrides (TMNs) nanostructures possess distinctive electronic, optical, and catalytic properties, showing great promise to apply in clean energy, optoelectronics, and catalysis fields. Nonetheless, phase-regulation of NiFe-bimetallic nitrides nanocrystals or nanohybrid architectures confronts challenges and their electrocatalytic overall water splitting (OWS) performances are underexplored. Herein, novel pure-phase Ni Fe N nanocrystals armored with amorphous N-doped carbon (NC) nanoparticles nanocubes (NPNCs) are obtained by controllable nitridation of NiFe-Prussian-blue analogues derived oxides/NC NPNCs under Ar/NH atmosphere. Such Ni Fe N/NC NPNCs possess mesoporous structures and show enhanced electrocatalytic activity in 1 m KOH electrolyte with the overpotential of 101 and 270 mV to attain 10 and 50 mA cm current toward hydrogen and oxygen evolution reactions, outperforming their counterparts (mixed-phase NiFe O /Ni FeN/NC and NiFe oxides/NC NPNCs). Remarkably, utilizing them as bifunctional catalysts, the assembled Ni Fe N/NC||Ni Fe N/NC electrolyzer only needs 1.51 V cell voltage for driving OWS to approach 10 mA cm water-splitting current, exceeding their counterparts and the-state-of-art reported bifunctional catalysts-based devices, and Pt/C||IrO couples. Additionally, the Ni Fe N/NC||Ni Fe N/NC manifests excellent durability for OWS. The findings presented here may spur the development of advanced TMNs nanostructures by combining phase, structure engineering, and hybridization strategies and stimulate their applications toward OWS or other clean energy fields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202203042DOI Listing

Publication Analysis

Top Keywords

nanocrystals armored
8
armored amorphous
8
amorphous n-doped
8
n-doped carbon
8
carbon nanoparticles
8
nanoparticles nanocubes
8
water splitting
8
tmns nanostructures
8
clean energy
8
oxides/nc npncs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!