Peatlands are vital soil carbon sinks, yet this function is jeopardized by plant carbon which could change the decomposition rate of soil organic carbon, knowing as "priming effect". How the priming effect depends on depth is a critical question in drained peatland given the heterogeneity of soil layers defined by the water table, which include the surface acrotelm, inter-mesotelm and deep catotelm. Here, through incubation, we quantified the response of these three soil layers to addition of C-labeled oxalate, glucose, cellulose, or cinnamic acid under anoxic or oxic conditions on the Zoige Plateau in Tibet. Soil carbon in the inter-mesotelm showed the greatest decomposition, with the highest humification index and lowest microbial biomass carbon, while the soil carbon at the surface acrotelm was least decomposed. Under anoxic conditions, exogenous carbon addition reduced CO emission by 12.2% at the surface acrotelm but increased by 59.8% in the inter-mesotelm and 23.5% in the deep catotelm. In the inter-mesotelm, oxalate addition significantly increased CO emission by 63.9%, while cinnamic acid significantly increased it by 92.9%. In the deep catotelm, cinnamic acid significantly increased CO emission by 55.3%. These results suggested that deeper soil organic carbon was more sensitive to plant carbon, particularly complex or recalcitrant carbon, than surface acrotelm soil. Under oxic conditions, carbon addition increased surface soil CO emission by 18.9%, and triggered even greater increase at inter-mesotelm and deep catotelm soil, with proportions of 48.3% and 32.0%, respectively. Under both conditions, peat profile CO release increased by 17.2-31.4% after exogenous carbon addition, and more than 77.8% of the increase came from the deeper two layers. These findings highlighted the need to take full account of priming effect of deeper soil in order to assess and predict the stability of carbon stocks in drained peatland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157539 | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA.
Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.
Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).
Phys Chem Chem Phys
January 2025
School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276000, China.
Molecular dynamics simulations demonstrate that regular conical helices of poly(-phenylene) (PPP) chains can be constructed inside the confined space of single-walled carbon nanocones (CNCs). The translocation displacement of the PPP chain combined with the change of the system total potential energy including each energy component and structural parameters of the formed conical helix is discussed to deeply explore the microstructure evolution, driving forces and dynamic mechanisms. In addition, the influence of chain length, cone angle, temperature, chain number, linked position of benzene rings and the form of Lennard-Jones potential on the helical encapsulation is further studied.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, NO. 1 DAXUE ROAD, Xuzhou, Jiangsu, 221116, China.
With the increasing demand for thermal management, phase change materials (PCMs) have garnered widespread attention due to their unique advantages in energy storage and temperature regulation. However, traditional PCMs present challenges in modification, with commonly used physical methods facing stability and compatibility issues. This study introduces a simple and effective chemical method by synthesizing seven ester-based PCMs through chemical reactions involving lauric acid (LA) and seven different alcohols.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jain University - Ramanagara Campus, Centre for Nano and Material Sciences, Jakkasandra Post Kanakapura Taluk, Ramanagara-562112, Bangalore, 562112, Bangalore, INDIA.
The development of a metallic copper-based catalyst system remains a significant challenge. Herein, we report the synthesis of highly stable, active, and reusable Cu0 catalyst for the carboboration of alkynes using carbon electrophiles and bis(pinacolato)diboron (B2pin2) as chemical feedstocks to afford di- and trisubstituted vinylboronate esters in a regio- and stereoselective manner with appreciable turnover number (TON) of up to 2535 under mild reaction conditions. This three-component coupling reaction works well with a variety of substituted electrophiles and alkynes with broad functional group tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!