Primary tumors are drivers of pre-metastatic niche formation, but the coordination by the secondary organ toward metastatic dissemination is underappreciated. Here, by single-cell RNA sequencing and immunofluorescence, we identified a population of cyclooxygenase 2 (COX-2)-expressing adventitial fibroblasts that remodeled the lung immune microenvironment. At steady state, fibroblasts in the lungs produced prostaglandin E2 (PGE2), which drove dysfunctional dendritic cells (DCs) and suppressive monocytes. This lung-intrinsic stromal program was propagated by tumor-associated inflammation, particularly the pro-inflammatory cytokine interleukin-1β, supporting a pre-metastatic niche. Genetic ablation of Ptgs2 (encoding COX-2) in fibroblasts was sufficient to reverse the immune-suppressive phenotypes of lung-resident myeloid cells, resulting in heightened immune activation and diminished lung metastasis in multiple breast cancer models. Moreover, the anti-metastatic activity of DC-based therapy and PD-1 blockade was improved by fibroblast-specific Ptgs2 deletion or dual inhibition of PGE2 receptors EP2 and EP4. Collectively, lung-resident fibroblasts reshape the local immune landscape to facilitate breast cancer metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830653 | PMC |
http://dx.doi.org/10.1016/j.immuni.2022.07.001 | DOI Listing |
J Control Release
January 2025
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Tumor hypoxia is a critical driver of cancer progression, metastasis, and therapy resistance, posing significant challenges in effective cancer treatment. Hypoxia-activable prodrugs offer a promising strategy to target tumors in low-oxygen conditions, but their efficacy is often hindered by intrinsic properties and extrinsic cues. In this study, we developed a dual-prodrug nanoassembly system (CPPA) composed of a hypoxia-triggerable camptothecin (CPT)-based dimeric prodrug (CP) and a lipid-conjugated STAT3 antisense oligonucleotide (ASO) prodrug (PA), aiming to enhance tumor-targeted chemotherapy and overcome the immune evasion within the tumor microenvironment.
View Article and Find Full Text PDFMol Cancer
January 2025
Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, BC, Mexico.
Liver metastases frequently occur in pancreatic and colorectal cancer. Their development is promoted by tumor-derived exosomes with the integrin αβ on their membrane. This integrin directs exosomes to the liver, where they promote a TGF-β-dependent pre-metastatic niche.
View Article and Find Full Text PDFHum Cell
January 2025
Integrated Head and Neck Oncology Program (DSRG-5), Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore, India.
FASEB J
January 2025
Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Cancer metastasis is the leading cause of cancer-related deaths, making early detection and the prevention of metastatic progression critical research priorities. Recent studies have expanded our understanding of CEMIP (KIAA1199, HYBID), revealing its involvement in cancer metastasis and its potential role in slowing cancer progression. CEMIP plays critical roles in several stages of cancer metastasis: First, CEMIP promotes cancer cell proliferation to maintain cell heterogeneity before the metastasis process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!