While many deep-learning-based computer-aided detection systems (CAD) have been developed and commercialized for abnormality detection in chest radiographs (CXR), their ability to localize a target abnormality is rarely reported. Localization accuracy is important in terms of model interpretability, which is crucial in clinical settings. Moreover, diagnostic performances are likely to vary depending on thresholds which define an accurate localization. In a multi-center, stand-alone clinical trial using temporal and external validation datasets of 1,050 CXRs, we evaluated localization accuracy, localization-adjusted discrimination, and calibration of a commercially available deep-learning-based CAD for detecting consolidation and pneumothorax. The CAD achieved image-level AUROC (95% CI) of 0.960 (0.945, 0.975), sensitivity of 0.933 (0.899, 0.959), specificity of 0.948 (0.930, 0.963), dice of 0.691 (0.664, 0.718), moderate calibration for consolidation, and image-level AUROC of 0.978 (0.965, 0.991), sensitivity of 0.956 (0.923, 0.978), specificity of 0.996 (0.989, 0.999), dice of 0.798 (0.770, 0.826), moderate calibration for pneumothorax. Diagnostic performances varied substantially when localization accuracy was accounted for but remained high at the minimum threshold of clinical relevance. In a separate trial for diagnostic impact using 461 CXRs, the causal effect of the CAD assistance on clinicians' diagnostic performances was estimated. After adjusting for age, sex, dataset, and abnormality type, the CAD improved clinicians' diagnostic performances on average (OR [95% CI] = 1.73 [1.30, 2.32]; p < 0.001), although the effects varied substantially by clinical backgrounds. The CAD was found to have high stand-alone diagnostic performances and may beneficially impact clinicians' diagnostic performances when used in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339006 | PMC |
http://dx.doi.org/10.1038/s41746-022-00658-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!