Background: Developmental signaling pathways such as those of Hedgehog (HH) and WNT play critical roles in cancer stem cell self-renewal, migration, and differentiation. They are often constitutively activated in many human malignancies, including non-small cell lung cancer (NSCLC). Previously, we reported that two oxysterol derivatives, Oxy186 and Oxy210, are potent inhibitors of HH/GLI signaling and NSCLC cancer cell growth. In addition, we also showed that Oxy210 is a potent inhibitor of TGF-β/SMAD signaling. In this follow-up study, we further explore the mechanism of action by which these oxysterols control NSCLC cell proliferation and tumor growth.
Results: Using a GLI-responsive luciferase reporter assay, we show here that HH ligand could not mount a signaling response in the NSCLC cell line A549, even though Oxy186 and Oxy210 still inhibited non-canonical GLI activity and suppressed the proliferation of A549 cells. Further, we uncover an unexpected activity of these two oxysterols in inhibiting the WNT/β-catenin signaling at the level of LRP5/6 membrane receptors. We also show that in a subcutaneous xenograft tumor model generated from A549 cells, Oxy186, but not Oxy210, exhibits strong inhibition of tumor growth. Subsequent RNA-seq analysis of the xenograft tumor tissue reveal that the WNT/β-catenin pathway is the target of Oxy186 in vivo.
Conclusion: The oxysterols Oxy186 and Oxy210 both possess inhibitory activity towards WNT/β-catenin signaling, and Oxy186 is also a potent inhibitor of NSCLC tumor growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338492 | PMC |
http://dx.doi.org/10.1186/s13578-022-00857-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!