Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Tissue engineering focuses on reconstructing the damaged meniscus by mimicking the native meniscus. The application of mechanical loading on chondrocyte-laden decellularized whole meniscus is providing the natural microenvironment. The goal of this study was to evaluate the effects of dynamic compression and shear load on chondrocyte-laden decellularized meniscus.
Material And Methods: The fresh samples of rabbit menisci were decellularized, and the DNA removal was confirmed by histological assessments and DNA quantification. The biocompatibility, degradation and hydration rate of decellularized menisci were evaluated. The decellularized meniscus was injected at a density of 1 × 10 chondrocyte per scaffold and was subjected to 3 cycles of dynamic compression and shear stimuli (1 h of 5% strain, ± 25°shear at 1 Hz followed by 1 h rest) every other day for 2 weeks using an ad hoc bioreactor. Cytotoxicity, GAG content, ultrastructure, gene expression and mechanical properties were examined in dynamic and static condition and compared to decellularized and intact menisci.
Results: Mechanical stimulation supported cell viability and increased glycosaminoglycan (GAG) accumulation. The expression of collagen-I (COL-I, 10.7-folds), COL-II (6.4-folds), aggrecan (AGG, 3.2-folds), and matrix metalloproteinase (MMP3, 2.3-folds) was upregulated compared to the static conditions. Furthermore, more aligned fibers and enhanced tensile strength were observed in the meniscus treated in dynamic condition with no sign of mineralization.
Conclusion: Compress and shear stimulation mimics the loads on the joint during walking and be able to improve cell function and ultrastructure of engineered tissue to recreate a functional artificial meniscus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338671 | PMC |
http://dx.doi.org/10.1186/s13287-022-03058-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!