α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2022.167761DOI Listing

Publication Analysis

Top Keywords

fibril polymorphs
12
aggregation intermediates
8
polymorphs distinct
8
distinct prion-like
8
polymorphs
5
α-synuclein aggregation
4
intermediates form
4
form fibril
4
prion-like properties
4
properties α-synuclein
4

Similar Publications

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Heterotypic Seeding Generates Mixed Amyloid Polymorphs.

Small Sci

September 2024

Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487, USA.

Aggregation of the amyloid β (Aβ) peptide into fibrils represents one of the major biochemical pathways underlying the development of Alzheimer's disease (AD). Extensive studies have been carried out to understand the role of fibrillar seeds on the overall kinetics of amyloid aggregation. However, the precise effect of seeds that are structurally or sequentially different from Aβ on the structure of the resulting amyloid aggregates is yet to be fully understood.

View Article and Find Full Text PDF

Background: Radiofrequency catheter ablation (RFCA) has become an important strategy for treating atrial fibrillation (AF), and postoperative recurrence represents a significant and actively discussed clinical concern. The recurrence after RFCA is considered closely related to inflammation. Systemic immune inflammation index (SII) is a novel inflammation predictor based on neutrophils, platelets, and lymphocytes, and is considered a biomarker that comprehensively reflects the immune inflammatory status of the body.

View Article and Find Full Text PDF

Advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryoEM) have revealed the polymorphic nature of the amyloid state of proteins. Given the association of amyloid with protein misfolding disorders, it is important to understand the principles underlying this polymorphism. To address this problem, we combined computational tools to predict the specific regions of the sequence forming the β-spine of amyloid fibrils with the availability of 30, 83 and 24 amyloid structures deposited in the Protein Data Bank (PDB) and Amyloid Atlas (AA) for the amyloid β (Aβ) peptide, α-synuclein (αS), and the 4R isoforms of tau, associated with Alzheimer's disease, Parkinson's disease, and various tauopathies, respectively.

View Article and Find Full Text PDF

Hypertension is the predominant cause of cardiovascular diseases (CVDs) globally, and essential hypertension (EH) represents a significant public health challenge due to its multifactorial etiology involving complex interactions between genetic and environmental factors. However, the pathogenesis of EH is still unclear. Hypertension is a dysregulation in the renin-angiotensin-aldosterone system and sympathetic nervous system, both regulating saline homeostasis and cardiovascular function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!