Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Revealing the vegetation response law under drought stress has become a hot issue in global climate change research. Against the background of human beings actively responding to climate change, quantitatively revealing the change and migration laws of green biomass loss (GBL) caused by drought in historical and future periods is insufficient. In this regard, we innovatively constructed a joint kNDVI-SPEI (kernel normalized difference vegetation index and standardized precipitation evapotranspiration index) distribution based on copula theory to accurately capture GBL dynamic under various drought scenarios unlike previous studies conducted in a deterministic way. Taking the drought-sensitive and ecologically vulnerable Central Asia (CA) as a typical region, we verified that an average 94.4 % of region showed greater vegetation vulnerability in times of water shortage from May to October, which exhibited the greatest probability of GBL under different drought scenarios, mainly in Kazakhstan and Uzbekistan. Significantly intensified drought due to high emissions will cause an 18.16 percentage-point increase in GBL probability in the far future (FFP, 2061-2100) compared to the near future (NFP, 2019-2060), which is much higher than in the lower-emission (0.38 %) and moderate-emission scenarios (9.82 %). In the NFP, the GBL barycenter will shift from Kazakhstan to Xinjiang, China; in the FFP, it will shift back to Kazakhstan due to the measures taken by the Chinese government to conserve energy and reduce emissions. Results illustrate that against the background of worsening drought, active climate change coping strategies can reverse the migration trajectory of the GBL barycenter caused by drought, which provides a new idea for vegetation protection research in response to global climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157656 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!