A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel nonylphenol-degrading bacterial strains isolated from sewage sludge: Application in bioremediation of sludge. | LitMetric

Nonylphenol (NP) is an anthropogenic pollutant frequently found in sewage sludge due to the insufficient degrading effectiveness of conventional WWTPs and has attracted attention as an endocrine disruptor. The aim of this study was to isolate specific NP-degrading bacteria from sewage sludge to be used in the degradation of this contaminant through bioaugmentation processes in aqueous solution and sewage sludge. Up to eight different bacterial strains were isolated, six of them not previously described as NP degraders. Bacillus safensis CN12 presented the best NP degradation in solution, and glucose used as an external carbon source increased its effect, reaching DT degradation values (time to decline to half the initial concentration of the pollutant) of only 0.9 days and a complete degradation in <7 days. Four NP metabolites were identified throughout the biodegradation process, showing higher toxicity than the parent contaminant. In sewage sludge suspensions, the endogenous microbiota was capable of partially degrading NP, but a part remained adsorbed as bound residue. Bioaugmentation was used for the first time to remove NP from sewage sludge to obtain more environmentally friendly biosolids. However, B. safensis CN12 was not able to degrade NP due to its high adsorption on sludge, but the use of a cyclodextrin (HPBCD) as availability enhancer allowed us to extract NP and degrade it in solution. The addition of glucose as an external carbon source gave the best results since the metabolism of the sludge microbiota was activated, and HPBCD was able to remove NP from sewage sludge to the solution to be degraded by B. safensis CN12. These results indicate that B. safensis CN12 can be used to degrade NP in water and sewage sludge, but the method must be improved using consortia of B. safensis CN12 with other bacterial strains able to degrade the toxic metabolites produced.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157647DOI Listing

Publication Analysis

Top Keywords

sewage sludge
16
bacterial strains
8
strains isolated
8
sludge
5
novel nonylphenol-degrading
4
nonylphenol-degrading bacterial
4
sewage
4
isolated sewage
4
sludge application
4
application bioremediation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!