The migration of extracellular antibiotic resistance genes (eARGs) in porous media is an important pathway for ARGs to spread to the subsoil and aquifer. Biochar (BC) has been widely used to reduce the mobility of soil contaminants, however, its effect on the mobility of eARGs in porous media and the mechanisms are largely unknown. Herein, the effects of BCs synthesized from wheat straw and corn straw at two pyrolysis temperatures (300 °C and 700 °C) on the transport of plasmids-carried eARGs in sand column were investigated. The BC amendments all significantly decreased the mobility of eARGs in the porous medium, but the mechanism varied with pyrolysis temperature. The higher temperature BCs had a stronger irreversible adsorption of plasmids and greatly enhanced the attachment and straining effects on plasmids during transport, thus more effectively inhibited the mobility of eARGs. The lower temperature BCs had weaker adsorption, attachment, and straining effects on plasmids, but induced generation of hydroxyl radicals in the porous medium and thereby fragmented the plasmids and hindered the amplification of eARGs. These findings are of fundamental significance for the potential application of BC in controlling the vertical spread of eARGs in soil and vadose zones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!