Textile dyeing wastewater treatment by Penicillium chrysogenum: Design of a sustainable process.

Water Sci Technol

Biochemical Engineering Group, INCITAA, CIC, CONICET, Ingeniering School, Mar del Plata National University, Av Juan B Justo 4302, Mar del Plata B7608FDQ, Argentina E-mail:

Published: July 2022

In this work a parametric study and a bench bioreactor degradation test of Direct Black 22 (DB22) by Penicillium chrysogenum was performed as a first approach to an industrial application, framed within a policy of sustainable processes development. Three ancillary carbon sources and their optimum initial concentrations were studied. These were: glucose, potato starch and potato industry wastewater. Their optimum initial concentration was 6 g/L. The use of potato starch as co-substrate showed the highest decolorization rate and COD removal. Degradation of DB22 using different immobilization supports (stainless steel sponge, loofah sponge and polyethylene strips) was studied and the results showed that the time needed for the treatment decreased from 6 to 4 d. Phytotoxicity was evaluated in the final products of the immobilized cells assays, using Lactuca sativa seeds. For all treatments phytoxicity was reduced with respect to the untreated wastewater, except for the assays using polyethylene strips. Finally, the reuse of the biomass attached to different carriers and the performance of the treatment of DB22 in a 1 L bench scale bioreactor were tested. P. chrysogenum decolorized at least four sucesives reuses. The reactor assays showed a better performance of the treatment.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2022.204DOI Listing

Publication Analysis

Top Keywords

penicillium chrysogenum
8
optimum initial
8
potato starch
8
polyethylene strips
8
performance treatment
8
textile dyeing
4
dyeing wastewater
4
treatment
4
wastewater treatment
4
treatment penicillium
4

Similar Publications

Antimicrobial Potential of Secalonic Acids from Arctic-Derived INA 01369.

Antibiotics (Basel)

January 2025

Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.

In this study, two compounds have been isolated from the Arctic-derived fungus INA 13460. Structural elucidation, performed using 2D NMR and HR-ESIMS data, has identified the compounds as stereoisomers of secalonic acids, dimeric tetrahydroxanthones. The absolute configurations of these stereoisomers have been determined through conformational NMR analysis and circular dichroism spectroscopy.

View Article and Find Full Text PDF

Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds.

J Fungi (Basel)

January 2025

Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.

Owing to their nutritional, culinary, and nutraceutical, mushrooms are worldwide consumed and appreciated. Moreover, many of these mushrooms are also known as medicinal mushrooms since they possess several pharmacological properties attributable to a huge number of bioactive compounds derived from their sporophores. Several studies are available in the literature about in vitro and in vivo mechanisms of actions of such bioactive compounds.

View Article and Find Full Text PDF

Omics-Based Comparison of Fungal Virulence Genes, Biosynthetic Gene Clusters, and Small Molecules in and .

J Fungi (Basel)

December 2024

Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.

is a ubiquitous pathogenic fungus that causes blue mold decay of apple fruit postharvest, and another member of the genus, , is a well-studied saprophyte valued for antibiotic and small molecule production. While these two fungi have been investigated individually, a recent discovery revealed that can block mediated decay of apple fruit. To shed light on this observation, we conducted a comparative genomic, transcriptomic, and metabolomic study of two (404 and 413) and two (Pe21 and R19) isolates.

View Article and Find Full Text PDF

A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.

View Article and Find Full Text PDF

Porcine blood, a significant byproduct of the pork industry, represents a potential source of antimicrobial peptides (AMPs). AMPs offer a promising alternative to chemical antimicrobials, which can be used as natural preservatives in the food industry. AMPs can exhibit both antibacterial and/or antifungal properties, thus improving food safety and addressing the growing concern of antibiotic and antifungal resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!