This study investigated the protective effect of quercetin against cyclophosphamide-induced immunosuppressive indoleamine 2,3-dioxygenase (IDO) via the mechanism of oxidative-inflammatory stress and behavioral indices. Cyclophosphamide (CYP) was administered to male Wister rats at a dose of 100 mg/kg with or without quercetin 50 mg/kg every other day for 7 days. Experimental techniques including western blotting, immunohistochemistry analysis, and inflammatory and oxidative stress marker assays were carried out. We also conducted behavioral analyses such as open field, tail suspension, and Y-maze tests for cognitive assessment. The results indicated that quercetin attenuated oxidative-inflammatory stress induced by CYP in the hippocampus and cerebral cortex of male Wister rats by augmenting the activities of antioxidant enzymes and suppressing lipid peroxidation as well as inflammatory mediators such as interleukin-6 and interferon-γ. Concomitantly, quercetin partially prevented the alteration in brain tissue histological architecture and mitigated the activities of IDO/tryptophan 2,3-dioxygenase (TDO) and protein expression of IDO1. This was corroborated by the IDO-quercetin model obtained in silico, revealing a favorable inhibitory interaction between quercetin and the enzyme. Finally, the results of behavioral tests suggested that quercetin significantly prevented the depressive-like posture of the CYP-treated rats. Our study for the first time revealed that quercetin ameliorates the effect of CYP-instigated IDO/TDO activities in the cerebral cortex and hippocampus via restoration of antioxidant enzymes and preventing oxidative-inflammatory stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.23179 | DOI Listing |
Sci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFSci Rep
December 2024
Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.
View Article and Find Full Text PDFNat Commun
December 2024
Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!