Against the background of carbon emission reduction, green finance (GF) has become a crucial financial instrument that promotes industrial transformation and low-carbon development. Although some scholars have explored the driving factors affecting the carbon emission intensity (CEI), there is a dearth of literature on the mediation and threshold effects of GF on CEI. Based on the panel data of 30 provinces in China during the period of 2004~2019, this study examined the direct, indirect, and threshold effects of GF on CEI by adopting the panel ordinary least squares, mediation effect, and threshold regression models, respectively. This study draws the following conclusions: GF can directly reduce the CEI. In addition, the scale economics effect and green technology innovation caused by GF have an inhibiting effect on the CEI. However, GF can promote the CEI through structural transformation. What's more, this study interestingly found that the effect of GF reducing CEI is dynamic and nonlinear. These findings can provide references for policy-makers who hope to accelerate carbon emission reduction and achieve low-carbon development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-22176-9 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.
Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Electrical and Electronic Engineering, Bangladesh University of Business and Technology, Dhaka-1216, Bangladesh.
Effectively managing and optimizing energy resources to accommodate population growth while minimizing carbon emissions has become increasingly intricate. A proficient approach to this dilemma is accurately predicting energy usage and emissions across diverse sectors. This paper unveils a genetic algorithm (GA)-optimized support vector regression (SVR) model designed to (i) predict electricity generation, (ii) predict energy consumption in four primary sectors-residential, industrial, commercial, and agricultural, and (iii) estimate sector-specific carbon emissions.
View Article and Find Full Text PDFHeliyon
January 2025
College of Politics and Governance, Mahasarakham University, Kantharawichai District, Mahasarakham, 44150, Thailand.
The imperative of addressing climate change has accentuated the pivotal role of reducing greenhouse gas emissions and harnessing the potential of community forests. This study meticulously explores the governance structures and mechanisms underpinning greenhouse gas emissions trading within community forests, aimed at curbing carbon emissions, and enhancing adaptive capacities in Thailand. With a central focus on cultivating enduring climate resilience, this research delves into the interplay of community perspectives with greenhouse gas emissions trading mechanisms, while also dissecting the genesis of sustainable strategies in the Thai context.
View Article and Find Full Text PDFACS Sustain Resour Manag
January 2025
Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Wind energy offers a low emission source of energy while also being among the cheapest forms of electricity generation in the United States. While most materials in a wind turbine can be recycled at the end of their life, large composite blades are often treated as waste, leading to potential strains on regional landfills, a loss of durable materials, and forfeiture of embodied energy. Numerous approaches exist for recycling composite wind blades at various levels of technological and commercial maturity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!