Recently, the edges of single-layer graphene have been experimentally doped with silicon atoms by means of scanning transmission electron microscopy. In this work, density functional theory is applied to model and characterize a wide range of experimentally inspired silicon doped zigzag-type graphene edges. The thermodynamic stability is assessed and the electronic and magnetic properties of the most relevant edge configurations are unveiled. Importantly, we show that silicon doping of graphene edges can induce a reversion of the spin orientation on the adjacent carbon atoms, leading to novel magnetic properties with possible applications in the field of spintronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338279 | PMC |
http://dx.doi.org/10.1038/s41598-022-16902-z | DOI Listing |
J Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Mechanical Engineering, Tsinghua University, Beijing, China.
Chemistry
December 2024
Ulsan National Institute of Science and Technology, Chemistry, UNIST-gil 50, Bldg.108, Rm901-5, 44919, Ulsan, KOREA, REPUBLIC OF.
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China.
Static friction, a ubiquitous physical phenomenon, plays a significant role in natural processes and industrial applications. Its influence is particularly notable in the field of controlled micromanipulation and precision manufacturing, where static friction often exceeds kinetic friction and leads to material damage and unpredictable behaviors. In this study, we report the first experimental observation of the elimination of static friction peak in sliding micrometer contacts of layered materials, achieved through a technique involving selective etching of the amorphous edges of single crystalline surfaces.
View Article and Find Full Text PDFChem Asian J
December 2024
Northwest Normal University, College of Chemistry and Chemical Engineering, CHINA.
In this paper, a new carbon dot (R1-CDs) was prepared by one-pot hydrothermal method by using 1,8-diaminonaphthalene and o-phthalic acid (o-PA) as precursors. Due to the high purity of R1-CDs, NMR analysis was performed to identify the types of H and C atoms in their graphene sheets. From our research findings, three important information was disclosed such as (1) five types H atoms are presented in R1-CDs; (2) 18 kinds of C atoms in the graphene sheets are observed, and 8 kinds of them are quaternary atoms, and 10 kinds of carbon atoms as tertiary one; (3) functional groups of -COOH and -NH2 from precursors cannot be inherited into the edges or defect sites of graphene sheet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!