A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Organic amendment additions to cadmium-contaminated soils for phytostabilization of three bioenergy crops. | LitMetric

Organic amendment additions to cadmium-contaminated soils for phytostabilization of three bioenergy crops.

Sci Rep

Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand.

Published: July 2022

The effects of organic amendments on the phytoremediation of cadmium (Cd) in acacia (Acacia mangium), jatropha (Jatropha curcas), and cassava (Manihot esculenta) were investigated. The bone meal/bat manure and leonardite/bat manure amendments resulted in better growth performance in both acacia and cassava (growth rate in dry biomass; GRDB 24.2 and 22.2, respectively), while bone meal (GRDB 17.2) was best for jatropha. The lower root/shoot ratio values of jatropha and acacia suggest that these species were better suited than cassava on Cd-contaminated soil. Cassava experienced toxicity symptoms after harvest (3 months). Acacia root accumulated somewhat greater Cd concentrations (up to 5.1 mg kg) than cassava and jatropha roots (2.2-3.9 and 2.7-4.1 mg kg, respectively). The bone meal and chicken manure (BMCM) treatment for jatropha had the highest bioconcentration factor for root (1.3) and the lowest translocation factor (0.7). Despite the fact that this treatment had substantial Cd concentrations in the soil (3.1 mg kg), low Cd accumulation value (3.2 mg kg) and the lowest Cd uptake value (127.8 mg plant) were observed, clearly indicating that this amendment reduced Cd bioavailability. When growth performance of the study plants is considered, jatropha and acacia may be suitable for phytomanagement of Cd-contaminated soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338034PMC
http://dx.doi.org/10.1038/s41598-022-17385-8DOI Listing

Publication Analysis

Top Keywords

growth performance
8
bone meal
8
jatropha acacia
8
cd-contaminated soil
8
jatropha
7
acacia
6
cassava
5
organic amendment
4
amendment additions
4
additions cadmium-contaminated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!