Epigenetic modifications have been found to play crucial roles in myelodysplastic neoplasm (MDS) progression. Previously, we investigated genome-wide DNA methylation alterations during MDS evolution to acute myeloid leukemia (AML) by next-generation sequencing (NGS). Herein, we further determined the role and clinical implications of an evident methylation change in CpG islands at the SLIT2 promoter identified by NGS. First, increased SLIT2 promoter methylation was validated in 11 paired MDS/AML patients during disease evolution. Additionally, SLIT2 promoter methylation was markedly increased in MDS/AML patients compared with controls and was correlated with poor clinical phenotype and outcome. Interestingly, SLIT2 expression was particularly upregulated in AML patients and was not correlated with SLIT2 promoter methylation. However, the SLIT2-embedded genes SLIT2-IT1 and miR-218 were downregulated in AML patients, which was negatively associated with SLIT2 promoter methylation and further validated by demethylation studies. Functionally, SLIT2-IT1/miR-218 overexpression exhibited antileukemic effects by affecting cell proliferation, apoptosis and colony formation in vitro and in vivo. Mechanistically, SLIT2-IT1 may function as a competing endogenous RNA by sponging miR-3156-3p to regulate BMF expression, whereas miR-218 may directly target HOXA1 in MDS progression. In summary, our findings demonstrate that SLIT2 promoter hypermethylation is associated with disease evolution in MDS and predicts poor prognoses in both MDS and AML. Epigenetic inactivation of SLIT2-IT1/miR-218 by SLIT2 promoter hypermethylation could be a promising therapeutic target in MDS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41375-022-01659-1 | DOI Listing |
J Infect Dis
May 2023
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India.
During infection, Mycobacterium tuberculosis (Mtb) rewires distinct host signaling pathways that results in pathogen-favorable outcomes. Oxidative stress build-up is a key cellular manifestation that occurs due to the cumulative effect of elevated reactive oxygen species generation (ROS) and the inept ability of the cell to mitigate ROS levels. Here, we report the Mtb-induced expression of the neuronal ligand, SLIT2, to be instrumental in ROS accumulation during infection.
View Article and Find Full Text PDFGenes Cancer
December 2022
Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
Ewing sarcoma is a cancer of bone and soft tissue in children driven by EWS::ETS fusion, most commonly EWS::FLI1. Because current cytotoxic chemotherapies are not improving the survival of those with metastatic or recurrent Ewing sarcoma cases, there is a need for novel and more effective targeted therapies. While EWS::FLI1 is the major driver of Ewing sarcoma, EWS::FLI1 has been difficult to target.
View Article and Find Full Text PDFEur J Med Res
November 2022
Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
Background: Aberrant DNA methylation plays a crucial role in the progression of myeloid neoplasms. Previously, our literature reported that slit guidance ligand 2 (SLIT2) promoter methylation was associated with disease progression and indicated a poor prognosis in patients with myelodysplastic syndrome. Herein, we further investigated the clinical implications and role of SLIT2 promoter methylation in patients with chronic myeloid leukemia (CML).
View Article and Find Full Text PDFLeukemia
October 2022
Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.
Epigenetic modifications have been found to play crucial roles in myelodysplastic neoplasm (MDS) progression. Previously, we investigated genome-wide DNA methylation alterations during MDS evolution to acute myeloid leukemia (AML) by next-generation sequencing (NGS). Herein, we further determined the role and clinical implications of an evident methylation change in CpG islands at the SLIT2 promoter identified by NGS.
View Article and Find Full Text PDFFront Immunol
February 2022
Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
Slit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!