Endothelial dysfunction is common in patients with chronic kidney disease (CKD), but the mechanism is unknown. In this study, we found that the circulating ANRIL level was increased and correlated with vascular endothelial dysfunction in patients with CKD, also negatively correlated with plasma brain-derived neurotrophic factor (BDNF) concentration. We constructed the ANRIL knockout mice model, and found that ANRIL deficiency reversed the abnormal expression of BDNF, along with endothelial nitric oxide synthase (eNOS), vascular adhesion molecule 1 (VCAM-1) and Von Willebrand factor (vWF). Meanwhile, mitochondrial dynamics-related proteins, Dynamin-related protein 1 (Drp1) and mitofusins (Mfn2) level were also recovered. In addition, in vitro, serum derived from CKD patients and uremia toxins induced abnormal expression of ANRIL. By making use of the gain- and loss-of-function approaches, we observed that ANRIL mediated endothelial dysfunction through BDNF downregulation. To explore the specific mechanism, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) were used to explore the binding of ANRIL to histone methyltransferase Enhancer of zeste homolog 2 (EZH2). Further experiments found increased EZH2 and histone H3 lysine 27 trimethylation (H3K27me3) levels at the BDNF promoter region. Collectively, we demonstrated that ANRIL mediate BDNF transcriptional suppression through recruitment of EZH2 to the BDNF promoter region, then regulated the proteins expression related to endothelial function and mitochondrial dynamics. This study provides new insights for the study of endothelial dysfunction in CKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338026PMC
http://dx.doi.org/10.1038/s41419-022-05068-1DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
20
dysfunction bdnf
8
bdnf downregulation
8
chronic kidney
8
kidney disease
8
abnormal expression
8
bdnf promoter
8
promoter region
8
endothelial
7
bdnf
7

Similar Publications

Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration.

Drug Deliv Transl Res

January 2025

Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.

Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.

View Article and Find Full Text PDF

O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Background: Vascular dysfunction, blood-brain barrier (BBB) dysregulation, and neuroinflammation are thought to participate in Alzheimer`s disease (AD) pathogenesis, though the mechanism is poorly understood. Among pathways of interest, AD pathology appears to affect vascular endothelial growth factor-A (VEGFA) signaling in a bidirectional manner. Higher VEGF levels are thought to have a protective role and slow cognitive decline.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Brain endothelial cell (EC) stress, including that induced by vascular amyloid β (Aβ) deposits in cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), contributes to cerebral blood flow impairment, blood brain barrier (BBB) damage, neurovascular unit dysfunction, microhemorrhages and hypoperfusion, precipitating neurodegeneration and neuroinflammation processes. Epidemiological and experimental evidence suggests that hyperhomocysteinemia (Hhcy) contributes to increasing AD risk as well as CAA pathology. However, the cellular and molecular mechanisms through which Aβ and Hhcy drive EC and BBB dysfunction, whether the molecular effects of these challenges are additive or independent, and possible therapeutic strategies, remain to be determined.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.

Background: Small vessel disease (SVD) is a disorder of the brain's microvessels and a common cause of dementia and stroke. Evidence links normal ageing features to SVD progression, involving endothelial activation, pericyte dysfunction, BBB failure, and microglia response. Here, we aim to examine this relationship through a series of translational investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!