Getting sharper: the brain under the spotlight of super-resolution microscopy.

Trends Cell Biol

Interdisciplinary Institute for Neuroscience, University of Bordeaux and CNRS, Bordeaux, France. Electronic address:

Published: February 2023

Brain cells such as neurons and astrocytes exhibit an extremely elaborate morphology, and their functional specializations like synapses and glial processes often fall below the resolution limit of conventional light microscopy. This is a huge obstacle for neurobiologists because the nanoarchitecture critically shapes fundamental functions like synaptic transmission and Ca signaling. Super-resolution microscopy can overcome this problem, offering the chance to visualize the structural and molecular organization of brain cells in a living and dynamic tissue context, unlike traditional methods like electron microscopy or atomic force microscopy. This review covers the basic principles of the main super-resolution microscopy techniques in use today and explains how their specific strengths can illuminate the nanoscale mechanisms that govern brain physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2022.06.011DOI Listing

Publication Analysis

Top Keywords

super-resolution microscopy
12
brain cells
8
microscopy
6
sharper brain
4
brain spotlight
4
spotlight super-resolution
4
microscopy brain
4
cells neurons
4
neurons astrocytes
4
astrocytes exhibit
4

Similar Publications

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by hallmark pathologies that affect many brain regions, including the cellular microenvironment with the hippocampus, ultimately leading to profound deficits in cognition. Surprising recent work has shown that factors in the systemic environment regulate the hippocampal cellular niche; age-associated blood-borne factors exacerbate brain aging phenotypes, whereas youth-associated blood-borne factors, including tissue inhibitor of metalloproteinases 2 (TIMP2), reverse or ameliorate features of brain aging. As aging serves as the major risk factor for AD, and recent work shows that systemic factors can regulate AD pathology, we sought to characterize mechanisms by which the systemic environment regulates CNS phenotypes relevant to AD pathology through changes in neuroinflammation.

View Article and Find Full Text PDF

Background: Specialized pro-resolving mediators (SPMs) promote inflammatory resolution and homeostasis and are thought to have specific reprogramming effects on hman microglia. Decreased SPM levels have been correlated with chronic neuroinflammation, late-stage Alzheimer's disease (AD) and neuropathology in humans, yet few studies have explored the cellular signatures of resolution. Amyloid is though to bind one target resolution receptor, ChemR23, leading to internalization.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Tauopathies are a group of neurodegenerative disorders which are characterized by the accumulation of abnormal tau protein in the brain. However, the mechanistic understanding of pathogenic tau formation and spread within the brain remains elusive. Astrocytes are major immune reactive cells in the brain and have been implicated in exacerbating tau pathology by releasing extracellular vesicles (AEVs) containing pro-inflammatory cytokines and chemokines upon activation.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), an untreatable synaptic disorder, is the most frequent cause of dementia. It is still unclear which mechanisms drive the early synapse dysfunction in the most common late-onset AD (LOAD). The second most important LOAD risk gene identified, BIN1, is an endocytic regulator.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is diagnosed via postmortem detection of extracellular amyloid beta (Aβ) plaques or oligomers and intracellular hyperphosphorylated tau. These canonical pathologies are key players in AD etiology. A complementary line of research suggests that common human pathogens serve as the initial seeding agents which facilitate the pathologies of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!