Schwann cells play a critical role after peripheral nerve injury by clearing myelin debris, forming axon-guiding bands of Büngner, and remyelinating regenerating axons. Schwann cells undergo epigenomic remodeling to differentiate into a repair state that expresses unique genes, some of which are not expressed at other stages of Schwann cell development. We previously identified a set of enhancers that are activated in Schwann cells after nerve injury, and we determined whether these enhancers are preprogrammed into the Schwann cell epigenome as poised enhancers before injury. Poised enhancers share many attributes of active enhancers, such as open chromatin, but are marked by repressive histone H3 lysine 27 (H3K27) trimethylation rather than H3K27 acetylation. We find that most injury-induced enhancers are not marked as poised enhancers before injury indicating that injury-induced enhancers are not preprogrammed in the Schwann cell epigenome. Injury-induced enhancers are enriched with AP-1 binding motifs, and the c-JUN subunit of AP-1 had been shown to be critical to drive the transcriptional response of Schwann cells after injury. Using chromatin immunoprecipitation sequencing analysis in rat, we find that c-JUN binds to a subset of injury-induced enhancers. To test the role of specific injury-induced enhancers, we focused on c-JUN-binding enhancers upstream of the () gene, which is only upregulated in repair Schwann cells compared with other stages of Schwann cell development. We used targeted deletions in male/female mice to show that the enhancers are required for robust induction of the gene after injury. The proregenerative actions of Schwann cells after nerve injury depends on profound reprogramming of the epigenome. The repair state is directed by injury-induced transcription factors, like JUN, which is uniquely required after nerve injury. In this study, we test whether the injury program is preprogrammed into the epigenome as poised enhancers and define which enhancers bind JUN. Finally, we test the roles of these enhancers by performing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated deletion of JUN-bound injury enhancers in the gene. Although many long-range enhancers drive expression of at different developmental stages of specific tissues, these studies identify an entirely new set of enhancers that are required for induction in Schwann cells after injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410756 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2533-21.2022 | DOI Listing |
Eur Thyroid J
January 2025
H Heuer, Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany.
Objective: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with muscle hypoplasia and spastic paraplegia as key symptoms. These abnormalities have been attributed to an impaired TH transport across brain barriers and into neural cells thereby affecting brain development and function. Likewise, Mct8/Oatp1c1 (organic anion transporting polypeptide 1c1) double knockout (M/Odko) mice, a well-established murine AHDS model, display a strongly reduced TH passage into the brain as well as locomotor abnormalities.
View Article and Find Full Text PDFHeliyon
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
General Surgery Department, Center for Traumatology and Major Burns, 1st of May Street, El Iskan City, 2013, Ben Arous, Tunisia; Faculty of Medicine of Tunis. 15, Djebel Lakhdhar Street, 1007 Bab Saadoun, Tunis, Tunisia.
Introduction And Importance: Retroperitoneal schwannomas are extremely rare, benign tumors originating from Schwann cells in peripheral nerve sheaths, with few reported cases. Their deep location and nonspecific symptoms make preoperative diagnosis challenging, often requiring imaging and surgical resection for confirmation. This case highlights an uncommon presentation of retroperitoneal schwannoma in a young patient, emphasizing its rarity.
View Article and Find Full Text PDFExp Neurobiol
December 2024
Department of Anatomy and Cell Biology, Dong-A University, College of Medicine, Busan 49201, Korea.
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University of British Columbia, Vancouver, BC, Canada.
NF1 encodes the multifunctional tumour suppressor protein, neurofibromin, which is best known for its causative role in Neurofibromatosis type 1 and in regulating MAPK signaling. Neurofibromin, in a context-specific manner, is involved in various tumorigenic processes, including those in melanocytes. This study investigated whether NF1 loss can collaborate with oncogenic GNAQ to promote melanoma in the dermis or eyes, where the G alpha q pathway is almost always activated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!