Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band-excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so-called "better", "faster", and "less-biased" ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long-short-term memory (LSTM) β-variational autoencoders (β-VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback-Leibler-divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment-inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two-step, three-state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202202814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!