Background: Cyanophycinases are serine protease family enzymes which are required for the metabolism of cyanophycin, the natural polymer multi-L-arginyl-poly(L-aspartic acid). Cyanophycinases degrade cyanophycin to β-Asp-Arg dipeptides, which enables use of this important store of fixed nitrogen.
Methods: We used genetic code expansion to incorporate diaminopropionic acid into cyanophycinase in place of the active site serine, and determined a high-resolution structure of the covalent acyl-enzyme intermediate resulting from attack of cyanophycinase on a short cyanophycin segment.
Results: The structure indicates that cyanophycin dipeptide residues P1 and P1' bind shallow pockets adjacent to the catalytic residues. We observe many cyanophycinase - P1 dipeptide interactions in the co-complex structure. Calorimetry measurements show that at least two cyanophycin dipeptides are needed for high affinity binding to cyanophycinase. We also characterized a putative cyanophycinase which we found to be structurally very similar but that shows no activity and could not be activated by mutation of its active site.
General Significance: Despite its peptidic structure, cyanophycin is resistant to degradation by peptidases and other proteases. Our results help show how cyanophycinase can specifically bind and degrade this important polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2022.130217 | DOI Listing |
Bioresour Technol
December 2024
Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel. Electronic address:
This study explored a sustainable alternative to the Haber-Bosch process by enhancing the production of the nitrogen-rich polymer cyanophycin (CGP) in the diazotrophic cyanobacterium Nostoc sp. PCC 7120. Applying UV-mutagenesis followed by canavanine selection, we isolate an initial mutant with enhanced CGP accumulation.
View Article and Find Full Text PDFRNA Biol
January 2024
Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.
Curr Opin Biotechnol
November 2024
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States. Electronic address:
Recovering nitrogen (N) from wastewater is a potential avenue to reduce reliance on energy-intensive synthetic nitrogen fixation via Haber-Bosch and subsequent treatment of N-laden wastewaters through nitrification-denitrification. However, many technical and economic factors hinder widespread application of N recovery, particularly low N concentrations in municipal wastewater, paucity of high-efficiency separations technologies compatible with biological treatment, and suitable products and markets for recovered N. In this perspective, we contextualize the challenges of N recovery today, propose integrated biological and physicochemical technologies to improve selective and tunable N recovery, and propose an expanded product portfolio for recovered N products beyond fertilizers.
View Article and Find Full Text PDFBioresour Technol
February 2025
RWTH Aachen University, Institute of Applied Microbiology (iAMB), Worringer Weg 1, 52074 Aachen, Germany. Electronic address:
Solving the plastic crisis requires high recycling quotas and technologies that allow open loop recycling. Here a biological plastic valorization approach consisting of tandem enzymatic hydrolysis and monomer conversion of post-consumer polyethylene terephthalate into value-added products is presented. Hydrolysates obtained from enzymatic degradation of pre-treated post-consumer polyethylene terephthalate bottles in a stirred-tank reactor served as the carbon source for a batch fermentation with an engineered Pseudomonas putida strain to produce 90mg/L of the biopolymer cyanophycin.
View Article and Find Full Text PDFBiomimetics (Basel)
June 2024
Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!