Introduction: Monosomy of terminal 16p13.3 is a relatively common subtelomeric abnormality, most affected individuals presented α-thalassemia, some also have mental retardation, developmental abnormalities and/or speech delay and facial dysmorphism, which is termed ATR-16 syndrome. Here, we reported two novel 16p13.3 deletions involving the α-globin gene cluster and multispecies conserved sequences (MCSs), causing only a phenotype of α-thalassemia.
Methods: Samples were collected from members of the two families and were subjected to haematological and comprehensive genetic analysis.
Results: The novel 108 Kb deletion in family A extends from the non-protein coding RNA gene (WASIR2) to the NPRL3 gene, removing MCS-R1 to R3. This deletion should arise de novo because it wasn't detected in both parents. The novel 336 Kb deletion in family B should extend from telomere to ∼ chr16:336000, removing the entire α-globin gene cluster. Carriers of these two deletions presented with microcytosis and hypochromic red cells, in accordance with a phenotype of α-thalassemia carrier.
Conclusion: Our study increases the mutation spectrum of α-thalassemia. MCSs deletion should be considered in clinical practice of thalassemia screening and diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2022.146767 | DOI Listing |
Clin Rheumatol
January 2025
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of colorectal surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China.
This study analyzed targeted sequencing data from 6530 tissue samples from patients with metastatic Chinese colorectal cancer (CRC) to identify low mutation frequency and subgroup-specific driver genes, using three algorithms for overall CRC as well as across different clinicopathological subgroups. We analyzed 425 cancer-related genes, identifying 101 potential driver genes, including 36 novel to CRC. Notably, some genes demonstrated subgroup specificity; for instance, ERBB4 was found as a male-specific driver gene and mutations of ERBB4 only influenced the prognosis of male patients with CRC.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia.
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!