Determining the mechanisms of toxicity induced by pollutants has long been a research priority in lieu of considering the mechanisms of resilience that prevent deleterious impacts. Protective mechanisms in many taxa can be therapeutically targeted to enhance resilience to synthetic toxicants. For example, the environmental sensor, Nuclear factor (erythroid-derived 2)-like 2 (Nfe2l2 or Nrf2), a transcription factor, facilitates transcription of many protective genes. Hypospadias is a common malformation of the penis. The risk of being born with hypospadias increases with pollutant exposure. We use vinclozolin-induced hypospadias in the mouse as a model to test the hypothesis that pollutant-induced birth defects can be prevented and reduced in severity by augmenting natural mechanisms of resilience. Pregnant mice were exposed to the demasculinizing toxicant, vinclozolin, in combination with increasing doses of the NRF2 activator, sulforaphane. The sulforaphane dose that most effectively increased masculinization (anogenital distance) was identified and used to test the hypothesis that sulforaphane reduces the hypospadias-inducing potency of vinclozolin. Finally, a Nrf2 knockout study was conducted to test whether NRF2 was required for the sulforaphane-induced rescue effects. Sulforaphane supplementation to vinclozolin exposed embryos increased anogenital distance in a nonlinear fashion typical of Nrf2 activators. The most effective dose of sulforaphane (45 mg/kg) reduced the occurrence and severity of vinclozolin-induced hypospadias and corrected penis morphogenesis. The sulforaphane-induced rescue effect was dependent on the presence of Nrf2. Nrf2 plays a critical role in protecting the fetus from vinclozolin and reduces the incidence and severity of hypospadias, the most common birth defect in boys in many countries. This work lays a foundation for developing prenatal supplements that will protect the fetus from pollutant-induced hypospadias. Studying the protective mechanisms that drive resilience to toxicants will facilitate innovation of protective therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450412 | PMC |
http://dx.doi.org/10.1016/j.taap.2022.116177 | DOI Listing |
Toxicol Appl Pharmacol
September 2022
Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA; Harbor Branch Oceanographic Institute, Center for Coastal and Human Health, Florida Atlantic University, Fort Pierce, FL, USA. Electronic address:
Determining the mechanisms of toxicity induced by pollutants has long been a research priority in lieu of considering the mechanisms of resilience that prevent deleterious impacts. Protective mechanisms in many taxa can be therapeutically targeted to enhance resilience to synthetic toxicants. For example, the environmental sensor, Nuclear factor (erythroid-derived 2)-like 2 (Nfe2l2 or Nrf2), a transcription factor, facilitates transcription of many protective genes.
View Article and Find Full Text PDFToxicology
August 2021
Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha, 410013, PR China. Electronic address:
Vinclozolin (VCZ) is a fungicide with antiandrogen activity. Exposure to VCZ in maternal uterus may cause uterine, ovarian and testicular damage, hypospadias and prostate abnormality in the offspring. Hippo pathway, which is highly conservative and may be activated by miR132 and miR195a, can control organ size and tissue regeneration, and participate in injury and deformity.
View Article and Find Full Text PDFPediatr Res
December 2016
Department of Biology, East Carolina University, Greenville, North Carolina.
Background: Congenital abnormalities vary in presentation, yet studies using model organisms tend to focus on occurrence rather than severity of the defect. Scoring severity of abnormalities in model systems allows explicit hypothesis testing during basic, translational, and reverse translational studies. We developed and validated a protocol to quantify severity of male urogenital feminization (hypospadias) in the mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!