In addition to neuroprotective strategies, neuroregenerative processes could provide targets for stroke recovery. However, the upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) impedes innate regenerative efforts. Here, we examine the regulatory role of PTPσ (a major proteoglycan receptor) in dampening post-stroke recovery. Use of a receptor modulatory peptide (ISP) or Ptprs gene deletion leads to increased neurite outgrowth and enhanced NSCs migration upon inhibitory CSPG substrates. Post-stroke ISP treatment results in increased axonal sprouting as well as neuroblast migration deeply into the lesion scar with a transcriptional signature reflective of repair. Lastly, peptide treatment post-stroke (initiated acutely or more chronically at 7 days) results in improved behavioral recovery in both motor and cognitive functions. Therefore, we propose that CSPGs induced by stroke play a predominant role in the regulation of neural repair and that blocking CSPG signaling pathways will lead to enhanced neurorepair and functional recovery in stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677607 | PMC |
http://dx.doi.org/10.1016/j.celrep.2022.111137 | DOI Listing |
J Exerc Rehabil
December 2024
Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea.
The purpose of this study was to investigate the effects of weight- and non-weight-bearing exercises on the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, corticospinal axon regrowth and regeneration-related proteins following spinal cord injury (SCI). Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control group (n=6), SCI+sedentary group (SED, n=6), SCI+treadmill exercise group (TREAD, n=6), and SCI+swimming exercise group (SWIM, n=6). All rats in the SCI group were given the rest for 2 weeks after SCI, and then they were allowed to engage in low-intensity exercise for 6 weeks on treadmill device.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Neurosurgery, Freiburg University Medical Center, Breisacher Str. 64, 79106 Freiburg, Germany.
Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.
View Article and Find Full Text PDFJ Reconstr Microsurg
December 2024
Division of Reconstructive Microsurgery Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
Background: High-level median or ulnar nerve injuries and repairs typically result in suboptimal re-innervation of distal muscles. Functioning Free Muscle Transplantation (FFMT) is increasingly recognized as an effective method to restore function in chronic muscle denervation cases. This study investigates the efficacy of using an additional FFMT, neurotized by lateral sprouting axons from a repaired high-level mixed nerve in the upper limb, to enhance distal hand function.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France.
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
Tissue engineering research for neurological applications has demonstrated that biomaterial-based structural bridges present a promising approach for promoting regeneration. This is particularly relevant for penetrating traumatic brain injuries, where the clinical prognosis is typically poor, with no available regeneration-enhancing therapies. Specifically, repurposing clinically approved biomaterials offers many advantages (reduced approval time and achieving commercial scaleup for clinical applications), highlighting the need for detailed screening of potential neuromaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!