Understanding the conformational changes in the influenza B M2 ion channel at various protonation states.

Biophys Chem

School of Chemical Sciences, National Institute of Science Education & Research - Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O.Jatni, Khurda, Odisha 752050, India. Electronic address:

Published: October 2022

The characterization of influenza (A/B M2) ion channels is very important as they are potential binding sites for the drugs. We report the all-atom molecular dynamics study of the influenza B M2 ion channel in the presence of explicit solvent and lipid bilayers using the high resolution solid-state NMR structures. The importance of the various protonation states of histidine in the activation of the ion channel is discussed. The conformational changes at the closed and the open structures clearly show that the increase in tilt angle is necessary for the activation of the ion channel. Additionally, the free energy surfaces of the eight systems show the importance of the protonation state of the histidine residues in the activation of the influenza B M2 ion channel. The protonation of the histidine residues increases the tilt angle and the intra-helix distance which is evident from the superimposition of the structures corresponding to the maxima and the minima in the free energy landscape. The findings imply differences in the singly protonated and double protonated conformational states of BM2 ion channel and provide insights to help further studies of these ion channels as the drug targets for the influenza virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2022.106859DOI Listing

Publication Analysis

Top Keywords

ion channel
24
influenza ion
12
conformational changes
8
ion
8
channel protonation
8
protonation states
8
ion channels
8
activation ion
8
tilt angle
8
free energy
8

Similar Publications

To provide proof-of-concept (PoC), dose-range finding, and safety data for BI 1358894, a TRPC4/5 ion channel inhibitor, in patients with borderline personality disorder (BPD). This was a phase 2, multinational, randomized, double-blind, placebo controlled trial. Patients were randomized to oral placebo or BI 1358894 (5 mg, 25 mg, 75 mg, or 125 mg) once daily in a 2.

View Article and Find Full Text PDF

Anxiolytic-like Effect of Chrysin on Female Zebrafish is Likely Mediated by α5 subunits of GABAA Receptors.

Chem Biodivers

January 2025

UNIFESSPA: Universidade Federal do Sul e Sudeste do Para, Faculdade de Psicologia, Rod. BR-230 (Transamazônica), Loteamento Cidade Jardim, Av. dos Ipês, s/n.º - Ci, 68503000, Marabá, BRAZIL.

Chrysin (5,7-dihydroxyflavone) is a natural flavonoid with potential anxiolytic-like effects in preclinical models. Acute treatment with this molecule (0 - 10 mg/kg) produced a biphasic dose-response in the zebrafish light/dark test (LDT), with anxiolytic-like effect at low doses and anxiogenic-like effects at high doses. Chrysin (1 mg/kg) decreased anxiety-like behavior in the zebrafish novel tank test (NTT), but did not prevent the anxiogenic effects of acute stress.

View Article and Find Full Text PDF

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

AA-Stacked Hydrogen-Substituted Graphdiyne for Enhanced Lithium Storage.

Angew Chem Int Ed Engl

January 2025

Leibniz University Hanover: Leibniz Universitat Hannover, Institute for Solid State Physics, GERMANY.

Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.

View Article and Find Full Text PDF

Abdominal aortic aneurysm represents a critical pathology of the aorta that currently lacks effective pharmacological interventions. TNF receptor-associated factor 6 (TRAF6) has been established to be involved in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. However, its role in abdominal aortic aneurysm (AAA) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!