A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stress accumulation by confined ice in a temperature gradient. | LitMetric

Stress accumulation by confined ice in a temperature gradient.

Proc Natl Acad Sci U S A

Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.

Published: August 2022

When materials freeze, they often undergo damage due to ice growth. Although this damage is commonly ascribed to the volumetric expansion of water upon freezing, it is usually driven by the flow of water toward growing ice crystals that feeds their growth. The freezing of this additional water can cause a large buildup of stress. Here, we demonstrate a technique for characterizing this stress buildup with unprecedented spatial resolution. We create a stable ice-water interface in a controlled temperature gradient and measure the deformation of the confining boundary. Analysis of the deformation field reveals stresses applied to the boundary with [Formula: see text](micrometers) spatial resolution. Globally, stresses increase steadily over time as liquid water is transported to more deeply undercooled regions. Locally, stresses increase until ice growth is stalled by the confining stresses. Importantly, we find a strong localization of stresses, which significantly increases the likelihood of damage caused by the presence of ice, even in apparently benign freezing situations. Ultimately, the limiting stress that the ice exerts is proportional to the local undercooling, in accordance with the Clapeyron equation, which describes the equilibrium between a stressed solid and its melt. Our results are closely connected to the condensation pressure during liquid-liquid phase separation and the crystallization pressure for growing crystals. Thus, they are highly relevant in fields ranging from cryopreservation and frost heave to food science, rock weathering, and art conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351533PMC
http://dx.doi.org/10.1073/pnas.2200748119DOI Listing

Publication Analysis

Top Keywords

temperature gradient
8
ice growth
8
spatial resolution
8
stresses increase
8
ice
6
stresses
5
stress
4
stress accumulation
4
accumulation confined
4
confined ice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!