A general approach toward 2-thiophenylsubstituted oxazoles using aziridination of a double bond of (acyl)alkenyl thiophenes with the subsequent expansion of the aziridine ring is developed. The isolation of intermediate aziridine is not necessary. This expedient protocol covers a broad scope of readily available 2-, 3-, and benzothiophene derivatives, is practical and reliable, requires short reaction times, and is simple to set up and work up reaction mixtures. Thiophenyloxazoles, obtained by this method, exhibit fluorescence with high quantum yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c01365 | DOI Listing |
Molecules
January 2025
College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, China.
The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties.
View Article and Find Full Text PDFNano Lett
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
Robust interfaces in anodes play a crucial role in boosting sodium-ion battery (SIB) performance. However, the fragile interfaces constructed by a two-step synthesis or artificial stack are prone to be destroyed during the charging/discharging processes, which significantly reduces the lifetime of SIBs. Here, a facile construction strategy is developed to produce robust interfaces in hollow sphere-like CoSe/nitrogen-doped carbon (HS-CoSe/NC) using intrinsic Co, N, C in metal-organic framework as precursors, which enhance the electron/ion diffusion kinetics.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. Electronic address:
Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China. Electronic address:
Developing biomass-based adsorbents with superior uranium uptake performance is imperative yet challenging for the sustainable development of nuclear energy. Herein, we constructed a novel lignin-based adsorbent (DLP@PAO) with dual functional groups and enhanced structural stability via ingenious integration of lignin and polyamidoxime. The two-step modification strategy was innovatively employed to phosphorylate lignin, significantly enhancing the phosphorylation efficiency and achieving an over eight-fold increase in the U(VI) uptake capacity of lignin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!