A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning-based predictive modeling of depression in hypertensive populations. | LitMetric

Machine learning-based predictive modeling of depression in hypertensive populations.

PLoS One

The Department of Electrical and Computer Engineering, Automation and Systems Research Institute, Seoul National University, Seoul, Korea.

Published: August 2022

We aimed to develop prediction models for depression among U.S. adults with hypertension using various machine learning (ML) approaches. Moreover, we analyzed the mechanisms of the developed models. This cross-sectional study included 8,628 adults with hypertension (11.3% with depression) from the National Health and Nutrition Examination Survey (2011-2020). We selected several significant features using feature selection methods to build the models. Data imbalance was managed with random down-sampling. Six different ML classification methods implemented in the R package caret-artificial neural network, random forest, AdaBoost, stochastic gradient boosting, XGBoost, and support vector machine-were employed with 10-fold cross-validation for predictions. Model performance was assessed by examining the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, specificity, and F1-score. For an interpretable algorithm, we used the variable importance evaluation function in caret. Of all classification models, artificial neural network trained with selected features (n = 30) achieved the highest AUC (0.813) and specificity (0.780) in predicting depression. Support vector machine predicted depression with the highest accuracy (0.771), precision (0.969), sensitivity (0.774), and F1-score (0.860). The most frequent and important features contributing to the models included the ratio of family income to poverty, triglyceride level, white blood cell count, age, sleep disorder status, the presence of arthritis, hemoglobin level, marital status, and education level. In conclusion, ML algorithms performed comparably in predicting depression among hypertensive populations. Furthermore, the developed models shed light on variables' relative importance, paving the way for further clinical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337649PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272330PLOS

Publication Analysis

Top Keywords

depression hypertensive
8
hypertensive populations
8
adults hypertension
8
developed models
8
selected features
8
neural network
8
support vector
8
predicting depression
8
depression
6
models
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!