Zero echo time (ZTE) imaging is an MRI technique that produces images similar to those obtained with radiography or CT. In ZTE MRI, the very short T2 signal from the mineralized trabecular bone matrix and especially cortical bone-both of which have a low proton density (PD)-is sampled in a unique sequence setup. Additionally, the PD weighting of the ZTE sequence results in less contrast between soft tissues. Therefore, along with gray-scale inversion from black to white and vice versa, ZTE imaging provides excellent contrast between cortical bone and soft tissues similar to that of radiography and CT. However, despite isotropic or near-isotropic three-dimensional (3D) imaging capabilities of the ZTE sequence, spatial resolution in this technique is still inferior to that of radiography and CT, and 3D volume renderings are currently time-consuming and require postprocessing software that features segmentation and manual contouring. Optimization of ZTE MRI mostly entails adjustments of bandwidth, flip angle, field of view, and image matrix. A wide range of structural abnormalities and disease or healing processes in the musculoskeletal system are well delineated with ZTE MRI, including conditions that involve bone-based morphometric analyses (which aid diagnosis, help prognostication, and guide surgery), impaction, avulsion and stress fractures, loose bodies or erosions in and around joints, soft-tissue calcifications and ossifications, and bone tumors (including treatment response). The pitfalls of ZTE imaging include mimics of foci of calcification or ossification such as intra-articular gas and susceptibility artifacts from surgical materials and hemosiderin deposition, which can be avoided in many instances by cross-referencing images obtained with other MRI sequences. RSNA, 2022.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/rg.220029 | DOI Listing |
Bioengineering (Basel)
December 2024
Department of Radiology, University of California San Diego, San Diego, CA 92037, USA.
It is known that ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences can detect signals from water protons but not collagen protons in short T2 species such as cortical bone and tendons. However, whether collagen protons are visible with the zero echo time (ZTE) MRI sequence is still unclear. In this study, we investigated the potential of the ZTE MRI sequence on a clinical 3T scanner to directly image collagen protons via DO exchange and freeze-drying experiments.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan; Universite du Quebec a Trios-Rivieres, Trois- Rivières, Canada. Electronic address:
Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
December 2024
From the Department of Radiology (H.N.M., F.B.G.), Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India.
Background And Purpose: Congenital vertebral anomalies are commonly associated with underlying spinal cord anomaly which necessitates imaging both the spinal cord and the bony vertebral column to understand the extent of the deformity better. While MRI is the gold standard for spinal cord imaging, it does not provide CT-like bone details. Many MR bone imaging techniques have been tested in various adult spine conditions in the past decade but not much has been described on their reliability in pediatric spine.
View Article and Find Full Text PDFEur Radiol
November 2024
Department of Rheumatology, Pamukkale University School of Medicine, Denizli, Turkey.
Objective: Systemic sclerosis (SSc) is a chronic disease that can cause interstitial lung disease (ILD), a poor prognostic factor in SSc patients. Given the concerns over radiation exposure from repeated CT scans, there is a growing interest in exploring radiation-free imaging alternatives like MRI for ILD evaluation. The aim of this study is to assess the efficacy of three-dimensional zero echo time (3D-ZTE) MRI in assessing SSc-related ILD compared to the thin-slice chest CT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!