High morbidity, recurrence and mortality make hepatocellular carcinoma (HCC) a leading cause of cancer-related burden and deaths. The lack of prognostic evaluation methods weakened the therapeutic efficacy for HCC. Exosomal noncoding RNAs (ncRNAs) play a key role in cancer development. Our meta-analysis aimed to assess the prognostic value of exosome-transferred noncoding RNAs in predicting the outcomes of patients with HCC. We obtained 16 articles from PubMed, Web of Science, Scopus, and EMBASE up to 4 November 2021. The ncRNAs were divided into three parts: microRNAs (miRNA), long noncoding RNAs (lncRNA), and circular RNAs (circRNA). In the pooled hazard ratios (HRs), upregulated miRNAs were 3.06 (95% CI = 2.51-3.73), downregulated miRNAs were 3.28 (95% CI = 2.61-4.11), lncRNAs were 3.34 (95% CI = 1.87-5.96), and circRNAs were 1.76 (95% CI = 1.36-2.14). As the results of subgroup analysis, upregulated miRNAs had a pooled HR of 3.10 (95% CI = 1.66-5.81), and the HR of downregulated miRNAs was 3.04 (95% CI = 2.17-4.28) for multivariate analysis of overall survival (OS). Meanwhile, upregulated miRNAs had a pooled HR of 2.61 (95% CI = 1.89-3.60), and the HR of downregulated miRNAs was 3.77 (95% CI = 1.11-12.73) for multivariate analysis of other endpoints. Remarkably, miR-21 has a pooled HR of 2.48 (95%CI = 1.52-4.05, I2 = 0) for disease-free survival (DFS). In conclusion, the expression of exosomal noncoding RNAs can be used to evaluate the prognosis of patients with HCC. Exosome-transferred miR-21 might serve as a potential prognostic biomarker in HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/bgac066 | DOI Listing |
Adv Exp Med Biol
January 2025
Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China.
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.
Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.
Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).
Cancer Res
January 2025
Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, China.
In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).
View Article and Find Full Text PDFTurk J Gastroenterol
January 2025
Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Background/aims: Cholangiocarcinoma (CCA) is a malignant and insidious tumor that is tricky to treat. Long non-coding RNA (LncRNA) LINC01123 is a biomolecule that influences cancer progression by regulating gene expression via influencing the regulatory function of microRNAs in gene expression. Therefore, this study investigated the connection between LINC01123 and CCA and explored the underlying mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!