Introduction: Artificial intelligence through machine learning uses algorithms and prior learnings to make predictions. Recently, there has been interest to include more artificial intelligence in pharmacovigilance of products already in the market and pharmaceuticals in development.
Objective: The aim of this study was to identify and describe the uses of artificial intelligence in pharmacovigilance through a systematic literature review.
Methods: Embase and MEDLINE database searches were conducted for articles published from January 1, 2015 to July 9, 2021 using search terms such as 'pharmacovigilance,' 'patient safety,' 'artificial intelligence,' and 'machine learning' in the title or abstract. Scientific articles that contained information on the use of artificial intelligence in all modalities of patient safety or pharmacovigilance were reviewed and synthesized using a pre-specified data extraction template. Articles with incomplete information and letters to editor, notes, and commentaries were excluded.
Results: Sixty-six articles were identified for evaluation. Most relevant articles on artificial intelligence focused on machine learning, and it was used in patient safety in the identification of adverse drug events (ADEs) and adverse drug reactions (ADRs) (57.6%), processing safety reports (21.2%), extraction of drug-drug interactions (7.6%), identification of populations at high risk for drug toxicity or guidance for personalized care (7.6%), prediction of side effects (3.0%), simulation of clinical trials (1.5%), and integration of prediction uncertainties into diagnostic classifiers to increase patient safety (1.5%). Artificial intelligence has been used to identify safety signals through automated processes and training with machine learning models; however, the findings may not be generalizable given that there were different types of data included in each source.
Conclusion: Artificial intelligence allows for the processing and analysis of large amounts of data and can be applied to various disease states. The automation and machine learning models can optimize pharmacovigilance processes and provide a more efficient way to analyze information relevant to safety, although more research is needed to identify if this optimization has an impact on the quality of safety analyses. It is expected that its use will increase in the near future, particularly with its role in the prediction of side effects and ADRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40290-022-00441-z | DOI Listing |
Int J Surg
January 2025
Department of Cardiovascular Surgery, Xijing Hospital, Xi'an, Shaanxi, China.
Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.
Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.
Int J Surg
January 2025
Department of Surgery, Virgen del Rocio University Hospital, Seville, Spain.
Pancreatic surgery is considered one of the most challenging interventions by many surgeons, mainly due to retroperitoneal location and proximity to key and delicate vascular structures. These factors make pancreatic resection a demanding procedure, with successful rates far from optimal and frequent postoperative complications. Surgical planning is essential to improve patient outcomes, and in this regard, many technological advances made in the last few years have proven to be extremely useful in medical fields.
View Article and Find Full Text PDFInt J Surg
January 2025
Carcinoma Department of Traditional Chinese Medicine, Dianjiang People's Hospital of Chongqing, Chongqing, PR China.
The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.
View Article and Find Full Text PDFNano Lett
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the rapid development of the digital economy and artificial intelligence, heat sinks available for immersion phase-change liquid cooling (IPCLC) of chips are facing huge challenges. Here, we design a high-performance IPCLC heat sink based on a copper microgroove/nanocone (MGNC) composite structure. Maximal heat fluxes () of the MGNC structure, microgroove structure, and flat copper reach 112.
View Article and Find Full Text PDF3D Print Med
January 2025
Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA.
Background: Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!