Background: Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by systemic inflammation, fibrosis, vascular injury, reduced quality of life, and limited treatment options. Autologous hematopoietic stem cell transplantation (HSCT) has emerged as a potential intervention for severe SSc refractory to conventional treatment.
Objectives: To assess the benefits and harms of autologous hematopoietic stem cell transplantation for the treatment of systemic sclerosis (specifically, non-selective myeloablative HSCT versus cyclophosphamide; selective myeloablative HSCT versus cyclophosphamide; non-selective non-myeloablative HSCT versus cyclophosphamide).
Search Methods: We searched for randomized controlled trials (RCTs) in CENTRAL, MEDLINE, Embase, and trial registries from database insertion to 4 February 2022.
Selection Criteria: We included RCTs that compared HSCT to immunomodulators in the treatment of SSc.
Data Collection And Analysis: Two review authors independently selected studies for inclusion, extracted study data, and performed risk of bias and GRADE assessments to assess the certainty of evidence using standard Cochrane methods.
Main Results: We included three RCTs evaluating: non-myeloablative non-selective HSCT (10 participants), non-myeloablative selective HSCT (79 participants), and myeloablative selective HSCT (36 participants). The comparator in all studies was cyclophosphamide (123 participants). The study examining non-myeloablative non-selective HSCT had a high risk of bias given the differences in baseline characteristics between the two arms. The other studies had a high risk of detection bias for participant-reported outcomes. The studies had follow-up periods of one to 4.5 years. Most participants had severe disease, mean age 40 years, and the duration of disease was less than three years. Efficacy No study demonstrated an overall mortality benefit of HSCT when compared to cyclophosphamide. However, non-myeloablative selective HSCT showed overall survival benefits using Kaplan-Meier curves at 10 years and myeloablative selective HSCT at six years. We graded our certainty of evidence as moderate for non-myeloablative selective HSCT and myeloablative selective HSCT. Certainty of evidence was low for non-myeloablative non-selective HSCT. Event-free survival was improved compared to cyclophosphamide with non-myeloablative selective HSCT at 48 months (hazard ratio (HR) 0.34, 95% confidence interval (CI) 0.16 to 0.74; moderate-certainty evidence). There was no improvement with myeloablative selective HSCT at 54 months (HR 0.54 95% CI 0.23 to 1.27; moderate-certainty evidence). The non-myeloablative non-selective HSCT trial did not report event-free survival. There was improvement in functional ability measured by the Health Assessment Questionnaire Disability Index (HAQ-DI, scale from 0 to 3 with 3 being very severe functional impairment) with non-myeloablative selective HSCT after two years with a mean difference (MD) of -0.39 (95% CI -0.72 to -0.06; absolute treatment benefit (ATB) -13%, 95% CI -24% to -2%; relative percent change (RPC) -27%, 95% CI -50% to -4%; low-certainty evidence). Myeloablative selective HSCT demonstrated a risk ratio (RR) for improvement of 3.4 at 54 months (95% CI 1.5 to 7.6; ATB -37%, 95% CI -18% to -57%; RPC -243%, 95% CI -54% to -662%; number needed to treat for an additional beneficial outcome (NNTB) 3, 95% CI 2 to 9; low-certainty evidence). The non-myeloablative non-selective HSCT trial did not report HAQ-DI results. All transplant modalities showed improvement of modified Rodnan skin score (mRSS) (scale from 0 to 51 with the higher number being more severe skin thickness) favoring HSCT over cyclophosphamide. At two years, non-myeloablative selective HSCT showed an MD in mRSS of -11.1 (95% CI -14.9 to -7.3; ATB -22%, 95% CI -29% to -14%; RPC -43%, 95% CI -58% to -28%; moderate-certainty evidence). At 54 months, myeloablative selective HSCT at showed a greater improvement in skin scores than the cyclophosphamide group (RR 1.51, 95% CI 1.06 to 2.13; ATB -27%, 95% CI -6% to -47%; RPC -51%, 95% CI -6% to -113%; moderate-certainty evidence). The NNTB was 4 (95% CI 3 to 18). At one year, for non-myeloablative non-selective HSCT the MD was -16.00 (95% CI -26.5 to -5.5; ATB -31%, 95% CI -52% to -11%; RPC -84%, 95% CI -139% to -29%; low-certainty evidence). No studies reported data on pulmonary arterial hypertension. Adverse events In the non-myeloablative selective HSCT study, there were 51/79 serious adverse events with HSCT and 30/77 with cyclophosphamide (RR 1.7, 95% CI 1.2 to 2.3), with an absolute risk increase of 26% (95% CI 10% to 41%), and a relative percent increase of 66% (95% CI 20% to 129%). The number needed to treat for an additional harmful outcome was 4 (95% CI 3 to 11) (moderate-certainty evidence). In the myeloablative selective HSCT study, there were similar rates of serious adverse events between groups (25/34 with HSCT and 19/37 with cyclophosphamide; RR 1.43, 95% CI 0.99 to 2.08; moderate-certainty evidence). The non-myeloablative non-selective HSCT trial did not clearly report serious adverse events.
Authors' Conclusions: Non-myeloablative selective and myeloablative selective HSCT had moderate-certainty evidence for improvement in event-free survival, and skin thicknesscompared to cyclophosphamide. There is also low-certainty evidence that these modalities of HSCT improve physical function. However, non-myeloablative selective HSCT and myeloablative selective HSCT resulted in more serious adverse events than cyclophosphamide; highlighting the need for careful risk-benefit considerations for people considering these HSCTs. Evidence for the efficacy and adverse effects of non-myeloablative non-selective HSCT is limited at this time. Due to evidence provided from one study with high risk of bias, we have low-certainty evidence that non-myeloablative non-selective HSCT improves outcomes in skin scores, forced vital capacity, and safety. Two modalities of HSCT appeared to be a promising treatment option for SSc though there is a high risk of early treatment-related mortality and other adverse events. Additional research is needed to determine the effectiveness and adverse effects of non-myeloablative non-selective HSCT in the treatment of SSc. Also, more studies will be needed to determine how HSCT compares to other treatment options such as mycophenolate mofetil, as cyclophosphamide is no longer the first-line treatment for SSc. Finally, there is a need for a greater understanding of the role of HSCT for people with SSc with significant comorbidities or complications from SSc that were excluded from the trial criteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336163 | PMC |
http://dx.doi.org/10.1002/14651858.CD011819.pub2 | DOI Listing |
Clin Exp Med
January 2025
Immunology Department, Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany.
Adoptive cell therapy (ACT) using natural killer (NK) cells has emerged as a promising therapeutic strategy for acute myeloid leukemia (AML), addressing challenges such as chemotherapy resistance and high relapse rates. Over the years, clinical trials and studies have explored various sources of NK cells, including ex vivo expanded NK cell lines, CAR-NK cells, peripheral blood-derived NK cells, and umbilical cord blood-derived NK cells. These therapies have demonstrated varying degrees of therapeutic efficacy, ranging from transient anti-leukemia activity to sustained remission in select patient groups.
View Article and Find Full Text PDFExpert Rev Hematol
January 2025
Department of Medicine A, University of Münster, Münster, Germany.
Introduction: Inotuzumab ozogamicin (InO) is indicated for the treatment of adults with relapsed or refractory (R/R) acute lymphoblastic leukemia (ALL). This systematic literature review (CRD42022330496) assessed outcomes by baseline characteristics for patients with R/R ALL treated with InO to identify which patients may benefit most.
Methods: In adherence with PRISMA guidelines, searches were run in Embase and MEDLINE.
Sci Rep
January 2025
Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China.
This retrospective study aimed to stress the advantages of autologous hematopoietic stem cell transplantation (auto-HSCT) in treating primary MM. Ninety-four MM patients who underwent initial parallel sequential auto-HSCT were selected. Data on efficacy (efficacy evaluation, renal function and hemoglobin recovery), immune reconstitution (B-cell subsets, immunoglobulin levels, T-cell subsets, NK cells, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR)) and hematopoietic reconstitution times were collected and analyzed.
View Article and Find Full Text PDFCytotherapy
December 2024
Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.
Background Aims: In HLA-identical hematopoietic stem cell transplantation (HSCT), HLA-C1 group killer cell immunoglobulin-like receptor (KIR) ligands have been linked to graft-versus-host disease, whereas C2 homozygosity was associated with increased relapses. The differential impact of the recipients versus the donor's HLA-C KIR ligands cannot be determined in HLA-identical HSCT but may be elucidated in the haploidentical setting, in which HLA-C (including the HLA-C KIR ligand group) mismatching is frequently present.
Methods: We retrospectively investigated the effect of recipient versus donor C1 ligand content on survival and complications in post-transplant cyclophosphamide (PTCy)-based haploidentical HSCT (n = 170).
Mol Med
January 2025
Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!