Purpose: In radiation therapy, x-ray dose must be precisely sculpted to the tumor, while simultaneously avoiding surrounding organs at risk. This requires modulation of x-ray intensity in space and/or time. Typically, this is achieved using a multi leaf collimator (MLC)-a complex mechatronic device comprising over one hundred individually powered tungsten 'leaves' that move in or out of the radiation field as required. Here, an all-electronic x-ray collimation concept with no moving parts is presented, termed "SPHINX": Scanning Pencil-beam High-speed Intensity-modulated X-ray source. SPHINX utilizes a spatially distributed bremsstrahlung target and collimator array in conjunction with magnetic scanning of a high energy electron beam to generate a plurality of small x-ray "beamlets."
Methods: A simulation framework was developed in Topas Monte Carlo incorporating a phase space electron source, transport through user defined magnetic fields, bremsstrahlung x-ray production, transport through a SPHINX collimator, and dose in water. This framework was completely parametric, meaning a simulation could be built and run for any supplied geometric parameters. This functionality was coupled with Bayesian optimization to find the best parameter set based on an objective function which included terms to maximize dose rate for a user defined beamlet width while constraining inter-channel cross talk and electron contamination. Designs for beamlet widths of 5, 7, and 10 mm were generated. Each optimization was run for 300 iterations and took approximately 40 h on a 24-core computer. For the optimized 7-mm model, a simulation of all beamlets in water was carried out including a linear scanning magnet calibration simulation. Finally, a back-of-envelope dose rate formalism was developed and used to estimate dose rate under various conditions.
Results: The optimized 5-, 7-, and 10-mm models had beamlet widths of 5.1 , 7.2 , and 10.1 mm and dose rates of 3574, 6351, and 10 015 Gy/C, respectively. The reduction in dose rate for smaller beamlet widths is a result of both increased collimation and source occlusion. For the simulation of all beamlets in water, the scanning magnet calibration reduced the offset between the collimator channels and beam centroids from 2.9 ±1.9 mm to 0.01 ±0.03 mm. A slight reduction in dose rate of approximately 2% per degree of scanning angle was observed. Based on a back-of-envelope dose rate formalism, SPHINX in conjunction with next-generation linear accelerators has the potential to achieve substantially higher dose rates than conventional MLC-based delivery, with delivery of an intensity modulated 100 × 100 mm field achievable in 0.9 to 10.6 s depending on the beamlet widths used.
Conclusions: Bayesian optimization was coupled with Monte Carlo modeling to generate SPHINX geometries for various beamlet widths. A complete Monte Carlo simulation for one of these designs was developed, including electron beam transport of all beamlets through scanning magnets, x-ray production and collimation, and dose in water. These results demonstrate that SPHINX is a promising candidate for sculpting radiation dose with no moving parts, and has the potential to vastly improve both the speed and robustness of radiotherapy delivery. A multi-beam SPHINX system may be a candidate for delivering magavoltage FLASH RT in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.15887 | DOI Listing |
Neurogastroenterol Motil
January 2025
Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
Background: The carbon-13 spirulina gastric emptying breath test (GEBT) is approved to identify delayed, but not accelerated, gastric emptying (GE). We compared the utility of the GEBT to scintigraphy for diagnosing abnormal GE in patients with diabetes mellitus.
Methods: Twenty-eight patients with diabetes ate a 230-kcal test meal labeled with technetium 99 m and C-spirulina, after which 10 scintigraphic images and breath samples (baseline, 15, 30, 45, 60, 90, 120, 150, 180, 210, and 240 min) were collected on 2 occasions 1 week apart.
Med Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
Background: Previous studies have shown that in-beam magnetic resonance imaging (MRI) can be used to visualize a proton beam during the irradiation of liquid-filled phantoms. The beam energy- and current-dependent local image contrast observed in water was identified to be predominantly caused by beam-induced buoyant convection and associated flow effects. Besides this flow dependency, the MR signal change was found to be characterized by a change in the relaxation time of water, hinting at a radiochemical contribution, which was hypothesized to lie in oxygen depletion-evoked relaxation time lengthening.
View Article and Find Full Text PDFNEJM Evid
February 2025
DURECT Corporation, Cupertino, CA.
Background: Larsucosterol is a DNA methyltransferase inhibitor in development for alcohol-associated hepatitis (AH), a disease for which there is no approved therapy.
Methods: In this phase 2b trial, patients with severe AH were randomly assigned 1:1:1 to receive 30 mg or 90 mg of larsucosterol or placebo; a second dose was administered after 72 hours if the patient remained hospitalized. All patients received supportive care as determined by investigators.
mBio
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.
View Article and Find Full Text PDFJBRA Assist Reprod
January 2025
Racine IVF Unit, Fertility Institute, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Objective: To compare the number and outcomes of elective fertility preservation (FP) before and after the Covid-19 outbreak.
Methods: This retrospective study of 574 women who underwent elective FP between 01/2017-12/2021 included 123 women who underwent the procedure before and 451 who underwent it after the Covid-19 outbreak. The change in the number of women who underwent the procedure each month before and after the pandemic was calculated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!