Maize is native to the tropics and is very sensitive to photoperiod. Planting in temperate regions with increased hours of daylight always leads to late flowering, sterility, leggy plants, and increased numbers of maize leaves. This phenomenon severely affects the utilization of tropical maize germplasm resources. The sensitivity to photoperiod is mainly reflected in differences in plant height (PH), ear height (EH), total leaf number (LN), leaf number under ear (LE), silking stage (SS), and anthesis stage (AT) in the same variety under different photoperiod conditions. These differences are more pronounced for varieties that are more sensitive to photoperiod. In the current study, a high-density genetic map was constructed from a recombinant inbred line (RIL) population containing 209 lines to map the quantitative trait loci (QTL) for photoperiod sensitivity of PH, EH, LN, LE, SS, and AT. A total of 39 QTL were identified, including three consistent major QTL. We identified candidate genes in the consensus major QTL region by combined analysis of transcriptome data, and after enrichment by GO and KEGG, we identified a total of four genes (Zm00001d006212, Zm00001d017241, Zm00001d047761, and Zm00001d047632) enriched in the plant circadian rhythm pathway (KEGG:04712). We analyzed the expression levels of these four genes, and the analysis results showed that there were significant differences in response under different photoperiod conditions for three of them (Zm00001d047761, Zm00001d006212 and Zm00001d017241). The results of functional verification showed that the expression patterns of genes rhythmically oscillated, which can affect the length of the hypocotyl and the development of the shoot apical meristem. We also found that the phenotypes of the positive plants were significantly different from the control plants when they overexpressed the objective gene or when it was knocked out, and the expression period, phase, and amplitude of the target gene also shifted. The objective gene changed its own rhythmic oscillation period, phase, and amplitude with the change in the photoperiod, thereby regulating the photoperiod sensitivity of maize. These results deepen our understanding of the genetic structure of photoperiod sensitivity and lay a foundation for further exploration of the regulatory mechanism of photoperiod sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315444PMC
http://dx.doi.org/10.3389/fpls.2022.890780DOI Listing

Publication Analysis

Top Keywords

photoperiod sensitivity
20
photoperiod
11
sensitivity maize
8
sensitive photoperiod
8
leaf number
8
photoperiod conditions
8
qtl identified
8
major qtl
8
zm00001d006212 zm00001d017241
8
objective gene
8

Similar Publications

In the context of increasing pollution pressure on aquatic ecosystems, it is essential to improve our knowledge of habitat quality and its suitability for organisms. It is particularly relevant to better integrate early life stages of fish into pollution biomonitoring programs, as they are reliable indicators of ecosystem integrity and because of their high sensitivity to pollutants. To avoid the influence of environmental parameters on their development, a lab-on-field approach, called the ex-situ exposure method, was developed.

View Article and Find Full Text PDF

Rice is considered to be moderately salt-tolerant during germination, development, and ripening stages, and environmentally sensitive during seedling and reproductive stages, which affects seedling emergence and growth, resulting in significant yield losses. Seed conditioning with chitosan has been employed as a useful tool in high-salinity environments with the aim of increasing crop productivity and quality, as well as promoting more sustainable agricultural practices. Therefore, this study aimed to examine the effect of seed conditioning with chitosan on seed germination and rice seedling growth under salinity stress.

View Article and Find Full Text PDF

Molecular and Cellular Mechanisms of Photoperiod and Thermo-sensitive Genic Male Sterility in Plants.

Mol Plant

December 2024

Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China. Electronic address:

Photo-thermosensitive genic male sterile (P/TGMS) lines display male sterility under high temperature/long-day light conditions, and male fertility under low temperature/short-day light conditions. P/TGMS lines are the fundamental basis for the two-line hybrid breeding, which has notably increased the yield potential and grain quality of rice cultivars. In this review, we focus on the research progress on photoperiod and thermosensitive genic male sterility in plants.

View Article and Find Full Text PDF

Wild Atlantic salmon migrate to sea following completion of a developmental process known as parr-smolt transformation (PST), which establishes a seawater (SW) tolerant phenotype. Effective imitation of this aspect of anadromous life history is a crucial aspect of commercial salmon production, with current industry practice being marred by significant losses during transition from the freshwater (FW) to SW phase of production. The natural photoperiodic control of PST can be mimicked by exposing farmed juvenile fish to a reduced duration photoperiod for at least 6 weeks before increasing the photoperiod in the last 1-2 months before SW transfer.

View Article and Find Full Text PDF

Harnessing artificial neural networks to model caffeine degradation by High-Yield biodiesel algae Desmodesmus pannonicus.

Bioresour Technol

December 2024

Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.

Article Synopsis
  • Desmodesmus pannonicus IITISM-DIX2 was found to be more effective than Chlorella sorokiniana IITISM-DIX3 in breaking down caffeine, leading to the creation of a predictive artificial neural network (ANN) model for caffeine removal efficiency.
  • The ANN model, structured with a 4-15-1 multilayer perceptron, exhibited high accuracy with a correlation coefficient (R) over 0.96, showing that pH was the most important variable impacting caffeine degradation.
  • Indole acetic acid (IAA) not only improved lipid content in Desmodesmus by 91% in caffeine-laden wastewater but also positively influenced metabolic pathways, highlighting its potential in enhancing caffeine removal
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!