Developing immobilized-ionic liquids (ILs) sorbents is important for CO separation, and prior theoretically screening ILs is desirable considering the huge number of ILs. In this study, the compressibility of ILs was proposed as a new and additional index for screening ILs, and the developed predictive theoretical model, i.e., electrolyte perturbed-chain statistical associating fluid theory, was used to predict the properties for a wide variety of ILs in a wide temperature and pressure range to provide systematic data. In screening, firstly, the isothermal compressibilities of 272 ILs were predicted at pressures ranging from 1 to 6,000 bar and temperatures ranging from 298.15 to 323.15 K, and then 30 ILs were initially screened. Subsequently, the CO absorption capacities in these 30 ILs at temperatures from 298.15 to 323.15 K and pressures up to 50 bar were predicted, and 7 ILs were identified. In addition, the CO desorption enthalpies in these 7 ILs were estimated for further consideration. The performance of one of the screened ILs was verified with the data determined experimentally, evidencing that the screen is reasonable, and the consideration of IL-compressibility is essential when screening ILs for the immobilized-IL sorbents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321636PMC
http://dx.doi.org/10.3389/fchem.2022.941352DOI Listing

Publication Analysis

Top Keywords

ils
13
screening ils
12
screening
5
screening ionic
4
ionic liquids
4
liquids developing
4
developing advanced
4
advanced immobilization
4
immobilization technology
4
technology separation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!