Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) inactivation is an important step toward enhanced biosafety in testing facilities and affords a reduction in the biocontainment level necessary for handling virus-positive biological specimens. Virus inactivation methods commonly employ heat, detergents, or combinations thereof. In this work, we address the dearth of information on the efficacy of SARS-CoV-2 inactivation procedures in plasma and their downstream impact on immunoassays. We evaluated the effects of heat (56 °C for 30 min), detergent (1-5% Triton X-100), and solvent-detergent (SD) combinations [0.3-1% tri--butyl phosphate (TNBP) and 1-2% Triton X-100] on 19 immunoassays across different assay formats. Treatments are deemed immunoassay-compatible when the average and range of percentage recovery (treated concentration relative to untreated concentration) lie between 90-110 and 80-120%, respectively. We show that SD treatment (0.3% TNBP/1% Triton-X100) is compatible with more than half of the downstream immunoassays tested and is effective in reducing SARS-CoV-2 infectivity in plasma to below detectable levels in plaque assays. This facile method offers enhanced safety for laboratory workers handling biological specimens in clinical and research settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301769 | PMC |
http://dx.doi.org/10.1021/acsomega.2c02585 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!