The intrauterine environment can induce alterations of the epigenome that have a lasting impact on disease risk. Current human studies in the field focus on a single epigenetic mark, DNA methylation, measured in blood. For in-depth mechanistic insight into the developmental origins of disease, it will be crucial to consider innovative tissue types. Mesenchymal stromal cells (MSCs) may serve as a novel tool to investigate the full epigenome beyond DNA methylation, to explore other omics levels, and to perform functional assays. Moreover, MSCs can be differentiated into multiple cell types and thereby mimic otherwise inaccessible cell types. A first wave of studies supports the potential of MSCs and illustrates how the innovative use of this cell type may be incorporated in birth cohorts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tem.2022.06.002 | DOI Listing |
Acta Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFNarra J
December 2024
Faculty of Medicine, Universitas HKBP Nommensen, Medan, Indonesia.
Ischemic stroke is a sudden onset of neurological deficit resulting from a blockage in cerebral blood vessels, which can lead to brain tissue damage, chronic disability, and increased risk of mortality. Secretome from hypoxic mesenchymal stem cells (SH-MSC) is a potential therapy to improve neurological deficit by increasing the expression of vascular endothelial growth factor (VEGF) and reducing glial fibrillary acidic protein (GFAP). These effects can reduce the infarction area of ischemic stroke.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.
Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
Cell therapies as treatments for neonatal conditions have attracted significant research and parent interest over the last two decades. Mesenchymal stromal cells, umbilical cord blood cells and neural stem cells translate from lab, to preclinical and into clinical trials, with contributions being made from all over the world. Effective and timely translation involves frequent reflection and consultation from research-adjacent fields (i.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!