Background And Purpose: Supervised deep learning is the state-of-the-art method for stroke lesion segmentation on NCCT. Supervised methods require manual lesion annotations for model development, while unsupervised deep learning methods such as generative adversarial networks do not. The aim of this study was to develop and evaluate a generative adversarial network to segment infarct and hemorrhagic stroke lesions on follow-up NCCT scans.

Materials And Methods: Training data consisted of 820 patients with baseline and follow-up NCCT from 3 Dutch acute ischemic stroke trials. A generative adversarial network was optimized to transform a follow-up scan with a lesion to a generated baseline scan without a lesion by generating a difference map that was subtracted from the follow-up scan. The generated difference map was used to automatically extract lesion segmentations. Segmentation of primary hemorrhagic lesions, hemorrhagic transformation of ischemic stroke, and 24-hour and 1-week follow-up infarct lesions were evaluated relative to expert annotations with the Dice similarity coefficient, Bland-Altman analysis, and intraclass correlation coefficient.

Results: The median Dice similarity coefficient was 0.31 (interquartile range, 0.08-0.59) and 0.59 (interquartile range, 0.29-0.74) for the 24-hour and 1-week infarct lesions, respectively. A much lower Dice similarity coefficient was measured for hemorrhagic transformation (median, 0.02; interquartile range, 0-0.14) and primary hemorrhage lesions (median, 0.08; interquartile range, 0.01-0.35). Predicted lesion volume and the intraclass correlation coefficient were good for the 24-hour (bias, 3 mL; limits of agreement, -64-59 mL; intraclass correlation coefficient, 0.83; 95% CI, 0.78-0.88) and excellent for the 1-week (bias, -4 m; limits of agreement,-66-58 mL; intraclass correlation coefficient, 0.90; 95% CI, 0.83-0.93) follow-up infarct lesions.

Conclusions: An unsupervised generative adversarial network can be used to obtain automated infarct lesion segmentations with a moderate Dice similarity coefficient and good volumetric correspondence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575413PMC
http://dx.doi.org/10.3174/ajnr.A7582DOI Listing

Publication Analysis

Top Keywords

generative adversarial
20
dice similarity
16
similarity coefficient
16
intraclass correlation
16
interquartile range
16
deep learning
12
adversarial network
12
correlation coefficient
12
unsupervised deep
8
lesion
8

Similar Publications

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients with and without diabetes. We also used visualizing techniques (gradient-weighted class activation mapping (Grad-CAM) and generative adversarial networks (GAN)) to identify the novel and early pathological changes on light microscopy in diabetic nephropathy.

View Article and Find Full Text PDF

The emergence of infectious disease and antibiotic resistance in bacteria like Escherichia coli (E. coli) shows the necessity for novel computational techniques for identifying essential genes that contribute to resistance. The task of identifying resistant strains and multi-drug patterns in E.

View Article and Find Full Text PDF

Diffusion models, variational autoencoders, and generative adversarial networks (GANs) are three common types of generative artificial intelligence models for image generation. Among these, GANs are the most frequently used for medical image generation and are often employed for data augmentation in various studies. However, due to the adversarial nature of GANs, where the generator and discriminator compete against each other, the training process can sometimes end with the model unable to generate meaningful images or even producing noise.

View Article and Find Full Text PDF

The disease affects the optic nerve and represents the principle reasons of irreversible vision loss, mostly asymptomatic and uncontrolled. Consequently, early and accurate diagnosis is critical to prevent or reduce its effect, however, conventional diagnostic techniques often fail to provide concrete results. In this regard, we present a new approach built on Generative Adversarial Networks (GAN) and MobileNetV2 pretrained architecture for diagnosing glaucoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!