Phylogenomic analysis of Nostocsp. MG11, a terrestrial cyanobacterium, and some terrestrial and freshwater Nostoc strains showed that the terrestrial strains grouped together in a distinctive clade, which reveals the effect of habitat on shaping Nostoc genomes. Terrestrial strains showed larger genomes and had higher predicted CDS contents than freshwater strains. Comparative genomic analysis demonstrated that genome expansion in the terrestrial Nostoc is supported by an increase in copy number of the core genes and acquisition of shared genes. Transcriptomic profiling analysis under desiccation stress revealed that Nostoc sp. MG11 protected its cell by induction of catalase, proteases, sucrose synthase, trehalose biosynthesis and maltodextrin utilization genes and maintained its normal metabolism during this condition by up-regulation of genes related to phycobilisomes and light reactions of photosynthesis, CO fixation and protein metabolism. These results provide insights into the strategies related to survival and adaptation of Nostoc strains to terrestrial environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2022.110438 | DOI Listing |
Glob Chang Biol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.
Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Monitoring methane (CH) emissions from terrestrial ecosystems is essential for assessing the relative contributions of natural and anthropogenic factors leading to climate change and shaping global climate goals. Fires are a significant source of atmospheric CH, with the increasing frequency of megafires amplifying their impact. Global fire emissions exhibit large spatiotemporal variations, making the magnitude and dynamics difficult to characterize accurately.
View Article and Find Full Text PDFEcol Lett
January 2025
State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.
Microbial traits are critical for carbon sequestration and degradation in terrestrial ecosystems. Yet, our understanding of the relationship between carbon metabolic strategies and genomic traits like genome size remains limited. To address this knowledge gap, we conducted a global-scale meta-analysis of 2650 genomes, integrated whole-genome sequencing data, and performed a continental-scale metagenomic field study.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China. Electronic address:
Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!